| /**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
// namespace ?
var jsfeat = jsfeat || { REVISION: 'ALPHA' };
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
(function(global) {
    "use strict";
    //
    // CONSTANTS
    var EPSILON = 0.0000001192092896;
    var FLT_MIN = 1E-37;
    // implementation from CCV project
    // currently working only with u8,s32,f32
    var U8_t = 0x0100,
        S32_t = 0x0200,
        F32_t = 0x0400,
        S64_t = 0x0800,
        F64_t = 0x1000;
    var C1_t = 0x01,
        C2_t = 0x02,
        C3_t = 0x03,
        C4_t = 0x04;
    var _data_type_size = new Int32Array([ -1, 1, 4, -1, 4, -1, -1, -1, 8, -1, -1, -1, -1, -1, -1, -1, 8 ]);
    var get_data_type = (function () {
        return function(type) {
            return (type & 0xFF00);
        }
    })();
    var get_channel = (function () {
        return function(type) {
            return (type & 0xFF);
        }
    })();
    var get_data_type_size = (function () {
        return function(type) {
            return _data_type_size[(type & 0xFF00) >> 8];
        }
    })();
    // color conversion
    var COLOR_RGBA2GRAY = 0;
    var COLOR_RGB2GRAY = 1;
    var COLOR_BGRA2GRAY = 2;
    var COLOR_BGR2GRAY = 3;
    // box blur option
    var BOX_BLUR_NOSCALE = 0x01;
    // svd options
    var SVD_U_T = 0x01;
    var SVD_V_T = 0x02;
    var data_t = (function () {
        function data_t(size_in_bytes, buffer) {
            // we need align size to multiple of 8
            this.size = ((size_in_bytes + 7) | 0) & -8;
            if (typeof buffer === "undefined") { 
                this.buffer = new ArrayBuffer(this.size);
            } else {
                this.buffer = buffer;
                this.size = buffer.length;
            }
            this.u8 = new Uint8Array(this.buffer);
            this.i32 = new Int32Array(this.buffer);
            this.f32 = new Float32Array(this.buffer);
            this.f64 = new Float64Array(this.buffer);
        }
        return data_t;
    })();
    var matrix_t = (function () {
        // columns, rows, data_type
        function matrix_t(c, r, data_type, data_buffer) {
            this.type = get_data_type(data_type)|0;
            this.channel = get_channel(data_type)|0;
            this.cols = c|0;
            this.rows = r|0;
            if (typeof data_buffer === "undefined") { 
                this.allocate();
            } else {
                this.buffer = data_buffer;
                // data user asked for
                this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64));
            }
        }
        matrix_t.prototype.allocate = function() {
            // clear references
            delete this.data;
            delete this.buffer;
            //
            this.buffer = new data_t((this.cols * get_data_type_size(this.type) * this.channel) * this.rows);
            this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64));
        }
        matrix_t.prototype.copy_to = function(other) {
            var od = other.data, td = this.data;
            var i = 0, n = (this.cols*this.rows*this.channel)|0;
            for(; i < n-4; i+=4) {
                od[i] = td[i];
                od[i+1] = td[i+1];
                od[i+2] = td[i+2];
                od[i+3] = td[i+3];
            }
            for(; i < n; ++i) {
                od[i] = td[i];
            }
        }
        matrix_t.prototype.resize = function(c, r, ch) {
            if (typeof ch === "undefined") { ch = this.channel; }
            // relocate buffer only if new size doesnt fit
            var new_size = (c * get_data_type_size(this.type) * ch) * r;
            if(new_size > this.buffer.size) {
                this.cols = c;
                this.rows = r;
                this.channel = ch;
                this.allocate();
            } else {
                this.cols = c;
                this.rows = r;
                this.channel = ch;
            }
        }
        return matrix_t;
    })();
    var pyramid_t = (function () {
        function pyramid_t(levels) {
            this.levels = levels|0;
            this.data = new Array(levels);
            this.pyrdown = jsfeat.imgproc.pyrdown;
        }
        pyramid_t.prototype.allocate = function(start_w, start_h, data_type) {
            var i = this.levels;
            while(--i >= 0) {
                this.data[i] = new matrix_t(start_w >> i, start_h >> i, data_type);
            }
        }
        pyramid_t.prototype.build = function(input, skip_first_level) {
            if (typeof skip_first_level === "undefined") { skip_first_level = true; }
            // just copy data to first level
            var i = 2, a = input, b = this.data[0];
            if(!skip_first_level) {
                var j=input.cols*input.rows;
                while(--j >= 0) {
                    b.data[j] = input.data[j];
                }
            }
            b = this.data[1];
            this.pyrdown(a, b);
            for(; i < this.levels; ++i) {
                a = b;
                b = this.data[i];
                this.pyrdown(a, b);
            }
        }
        return pyramid_t;
    })();
    var keypoint_t = (function () {
        function keypoint_t(x,y,score,level,angle) {
            if (typeof x === "undefined") { x=0; }
            if (typeof y === "undefined") { y=0; }
            if (typeof score === "undefined") { score=0; }
            if (typeof level === "undefined") { level=0; }
            if (typeof angle === "undefined") { angle=-1.0; }
            this.x = x;
            this.y = y;
            this.score = score;
            this.level = level;
            this.angle = angle;
        }
        return keypoint_t;
    })();
    // data types
    global.U8_t = U8_t;
    global.S32_t = S32_t;
    global.F32_t = F32_t;
    global.S64_t = S64_t;
    global.F64_t = F64_t;
    // data channels
    global.C1_t = C1_t;
    global.C2_t = C2_t;
    global.C3_t = C3_t;
    global.C4_t = C4_t;
    // popular formats
    global.U8C1_t = U8_t | C1_t;
    global.U8C3_t = U8_t | C3_t;
    global.U8C4_t = U8_t | C4_t;
    global.F32C1_t = F32_t | C1_t;
    global.F32C2_t = F32_t | C2_t;
    global.S32C1_t = S32_t | C1_t;
    global.S32C2_t = S32_t | C2_t;
    // constants
    global.EPSILON = EPSILON;
    global.FLT_MIN = FLT_MIN;
    // color convert
    global.COLOR_RGBA2GRAY = COLOR_RGBA2GRAY;
    global.COLOR_RGB2GRAY = COLOR_RGB2GRAY;
    global.COLOR_BGRA2GRAY = COLOR_BGRA2GRAY;
    global.COLOR_BGR2GRAY = COLOR_BGR2GRAY;
    // options
    global.BOX_BLUR_NOSCALE = BOX_BLUR_NOSCALE;
    global.SVD_U_T = SVD_U_T;
    global.SVD_V_T = SVD_V_T;
    global.get_data_type = get_data_type;
    global.get_channel = get_channel;
    global.get_data_type_size = get_data_type_size;
    global.data_t = data_t;
    global.matrix_t = matrix_t;
    global.pyramid_t = pyramid_t;
    global.keypoint_t = keypoint_t;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
(function(global) {
    "use strict";
    //
    var cache = (function() {
        // very primitive array cache, still need testing if it helps
        // of course V8 has its own powerful cache sys but i'm not sure
        // it caches several multichannel 640x480 buffer creations each frame
        var _pool_node_t = (function () {
            function _pool_node_t(size_in_bytes) {
                this.next = null;
                this.data = new jsfeat.data_t(size_in_bytes);
                this.size = this.data.size;
                this.buffer = this.data.buffer;
                this.u8 = this.data.u8;
                this.i32 = this.data.i32;
                this.f32 = this.data.f32;
                this.f64 = this.data.f64;
            }
            _pool_node_t.prototype.resize = function(size_in_bytes) {
                delete this.data;
                this.data = new jsfeat.data_t(size_in_bytes);
                this.size = this.data.size;
                this.buffer = this.data.buffer;
                this.u8 = this.data.u8;
                this.i32 = this.data.i32;
                this.f32 = this.data.f32;
                this.f64 = this.data.f64;
            }
            return _pool_node_t;
        })();
        var _pool_head, _pool_tail;
        var _pool_size = 0;
        return {
            allocate: function(capacity, data_size) {
                _pool_head = _pool_tail = new _pool_node_t(data_size);
                for (var i = 0; i < capacity; ++i) {
                    var node = new _pool_node_t(data_size);
                    _pool_tail = _pool_tail.next = node;
                    _pool_size++;
                }
            },
            get_buffer: function(size_in_bytes) {
                // assume we have enough free nodes
                var node = _pool_head;
                _pool_head = _pool_head.next;
                _pool_size--;
                if(size_in_bytes > node.size) {
                    node.resize(size_in_bytes);
                }
                return node;
            },
            put_buffer: function(node) {
                _pool_tail = _pool_tail.next = node;
                _pool_size++;
            }
        };
    })();
    global.cache = cache;
    // for now we dont need more than 30 buffers
    // if having cache sys really helps we can add auto extending sys
    cache.allocate(30, 640*4);
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
(function(global) {
    "use strict";
    //
    var math = (function() {
        var qsort_stack = new Int32Array(48*2);
        return {
            get_gaussian_kernel: function(size, sigma, kernel, data_type) {
                var i=0,x=0.0,t=0.0,sigma_x=0.0,scale_2x=0.0;
                var sum = 0.0;
                var kern_node = jsfeat.cache.get_buffer(size<<2);
                var _kernel = kern_node.f32;//new Float32Array(size);
                if((size&1) == 1 && size <= 7 && sigma <= 0) {
                    switch(size>>1) {
                        case 0:
                        _kernel[0] = 1.0;
                        sum = 1.0;
                        break;
                        case 1:
                        _kernel[0] = 0.25, _kernel[1] = 0.5, _kernel[2] = 0.25;
                        sum = 0.25+0.5+0.25;
                        break;
                        case 2:
                        _kernel[0] = 0.0625, _kernel[1] = 0.25, _kernel[2] = 0.375, 
                        _kernel[3] = 0.25, _kernel[4] = 0.0625;
                        sum = 0.0625+0.25+0.375+0.25+0.0625;
                        break;
                        case 3:
                        _kernel[0] = 0.03125, _kernel[1] = 0.109375, _kernel[2] = 0.21875, 
                        _kernel[3] = 0.28125, _kernel[4] = 0.21875, _kernel[5] = 0.109375, _kernel[6] = 0.03125;
                        sum = 0.03125+0.109375+0.21875+0.28125+0.21875+0.109375+0.03125;
                        break;
                    }
                } else {
                    sigma_x = sigma > 0 ? sigma : ((size-1)*0.5 - 1.0)*0.3 + 0.8;
                    scale_2x = -0.5/(sigma_x*sigma_x);
                    for( ; i < size; ++i )
                    {
                        x = i - (size-1)*0.5;
                        t = Math.exp(scale_2x*x*x);
                        _kernel[i] = t;
                        sum += t;
                    }
                }
                if(data_type & jsfeat.U8_t) {
                    // int based kernel
                    sum = 256.0/sum;
                    for (i = 0; i < size; ++i) {
                        kernel[i] = (_kernel[i] * sum + 0.5)|0;
                    }
                } else {
                    // classic kernel
                    sum = 1.0/sum;
                    for (i = 0; i < size; ++i) {
                        kernel[i] = _kernel[i] * sum;
                    }
                }
                jsfeat.cache.put_buffer(kern_node);
            },
            // model is 3x3 matrix_t
            perspective_4point_transform: function(model, src_x0, src_y0, dst_x0, dst_y0,
                                                        src_x1, src_y1, dst_x1, dst_y1,
                                                        src_x2, src_y2, dst_x2, dst_y2,
                                                        src_x3, src_y3, dst_x3, dst_y3) {
                var t1 = src_x0;
                var t2 = src_x2;
                var t4 = src_y1;
                var t5 = t1 * t2 * t4;
                var t6 = src_y3;
                var t7 = t1 * t6;
                var t8 = t2 * t7;
                var t9 = src_y2;
                var t10 = t1 * t9;
                var t11 = src_x1;
                var t14 = src_y0;
                var t15 = src_x3;
                var t16 = t14 * t15;
                var t18 = t16 * t11;
                var t20 = t15 * t11 * t9;
                var t21 = t15 * t4;
                var t24 = t15 * t9;
                var t25 = t2 * t4;
                var t26 = t6 * t2;
                var t27 = t6 * t11;
                var t28 = t9 * t11;
                var t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28);
                var t32 = t1 * t15;
                var t35 = t14 * t11;
                var t41 = t4 * t1;
                var t42 = t6 * t41;
                var t43 = t14 * t2;
                var t46 = t16 * t9;
                var t48 = t14 * t9 * t11;
                var t51 = t4 * t6 * t2;
                var t55 = t6 * t14;
                var Hr0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30;
                var Hr1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30;
                var Hr2 = t1;
                var Hr3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30;
                var Hr4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30;
                var Hr5 = t14;
                var Hr6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30;
                var Hr7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30;
                
                t1 = dst_x0;
                t2 = dst_x2;
                t4 = dst_y1;
                t5 = t1 * t2 * t4;
                t6 = dst_y3;
                t7 = t1 * t6;
                t8 = t2 * t7;
                t9 = dst_y2;
                t10 = t1 * t9;
                t11 = dst_x1;
                t14 = dst_y0;
                t15 = dst_x3;
                t16 = t14 * t15;
                t18 = t16 * t11;
                t20 = t15 * t11 * t9;
                t21 = t15 * t4;
                t24 = t15 * t9;
                t25 = t2 * t4;
                t26 = t6 * t2;
                t27 = t6 * t11;
                t28 = t9 * t11;
                t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28);
                t32 = t1 * t15;
                t35 = t14 * t11;
                t41 = t4 * t1;
                t42 = t6 * t41;
                t43 = t14 * t2;
                t46 = t16 * t9;
                t48 = t14 * t9 * t11;
                t51 = t4 * t6 * t2;
                t55 = t6 * t14;
                var Hl0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30;
                var Hl1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30;
                var Hl2 = t1;
                var Hl3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30;
                var Hl4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30;
                var Hl5 = t14;
                var Hl6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30;
                var Hl7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30;
                // the following code computes R = Hl * inverse Hr
                t2 = Hr4-Hr7*Hr5;
                t4 = Hr0*Hr4;
                t5 = Hr0*Hr5;
                t7 = Hr3*Hr1;
                t8 = Hr2*Hr3;
                t10 = Hr1*Hr6;
                var t12 = Hr2*Hr6;
                t15 = 1.0 / (t4-t5*Hr7-t7+t8*Hr7+t10*Hr5-t12*Hr4);
                t18 = -Hr3+Hr5*Hr6;
                var t23 = -Hr3*Hr7+Hr4*Hr6;
                t28 = -Hr1+Hr2*Hr7;
                var t31 = Hr0-t12;
                t35 = Hr0*Hr7-t10;
                t41 = -Hr1*Hr5+Hr2*Hr4;
                var t44 = t5-t8;
                var t47 = t4-t7;
                t48 = t2*t15;
                var t49 = t28*t15;
                var t50 = t41*t15;
                var mat = model.data;
                mat[0] = Hl0*t48+Hl1*(t18*t15)-Hl2*(t23*t15);
                mat[1] = Hl0*t49+Hl1*(t31*t15)-Hl2*(t35*t15);
                mat[2] = -Hl0*t50-Hl1*(t44*t15)+Hl2*(t47*t15);
                mat[3] = Hl3*t48+Hl4*(t18*t15)-Hl5*(t23*t15);
                mat[4] = Hl3*t49+Hl4*(t31*t15)-Hl5*(t35*t15);
                mat[5] = -Hl3*t50-Hl4*(t44*t15)+Hl5*(t47*t15);
                mat[6] = Hl6*t48+Hl7*(t18*t15)-t23*t15;
                mat[7] = Hl6*t49+Hl7*(t31*t15)-t35*t15;
                mat[8] = -Hl6*t50-Hl7*(t44*t15)+t47*t15;
            },
            // The current implementation was derived from *BSD system qsort():
            // Copyright (c) 1992, 1993
            // The Regents of the University of California.  All rights reserved.
            qsort: function(array, low, high, cmp) {
                var isort_thresh = 7;
                var t,ta,tb,tc;
                var sp = 0,left=0,right=0,i=0,n=0,m=0,ptr=0,ptr2=0,d=0;
                var left0=0,left1=0,right0=0,right1=0,pivot=0,a=0,b=0,c=0,swap_cnt=0;
                var stack = qsort_stack;
                if( (high-low+1) <= 1 ) return;
                stack[0] = low;
                stack[1] = high;
                while( sp >= 0 ) {
                
                    left = stack[sp<<1];
                    right = stack[(sp<<1)+1];
                    sp--;
                    for(;;) {
                        n = (right - left) + 1;
                        if( n <= isort_thresh ) {
                        //insert_sort:
                            for( ptr = left + 1; ptr <= right; ptr++ ) {
                                for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) {
                                    t = array[ptr2];
                                    array[ptr2] = array[ptr2-1];
                                    array[ptr2-1] = t;
                                }
                            }
                            break;
                        } else {
                            swap_cnt = 0;
                            left0 = left;
                            right0 = right;
                            pivot = left + (n>>1);
                            if( n > 40 ) {
                                d = n >> 3;
                                a = left, b = left + d, c = left + (d<<1);
                                ta = array[a],tb = array[b],tc = array[c];
                                left = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
                                                  : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
                                a = pivot - d, b = pivot, c = pivot + d;
                                ta = array[a],tb = array[b],tc = array[c];
                                pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
                                                  : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
                                a = right - (d<<1), b = right - d, c = right;
                                ta = array[a],tb = array[b],tc = array[c];
                                right = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
                                                  : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
                            }
                            a = left, b = pivot, c = right;
                            ta = array[a],tb = array[b],tc = array[c];
                            pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))   
                                               : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
                            if( pivot != left0 ) {
                                t = array[pivot];
                                array[pivot] = array[left0];
                                array[left0] = t;
                                pivot = left0;
                            }
                            left = left1 = left0 + 1;
                            right = right1 = right0;
                            ta = array[pivot];
                            for(;;) {
                                while( left <= right && !cmp(ta, array[left]) ) {
                                    if( !cmp(array[left], ta) ) {
                                        if( left > left1 ) {
                                            t = array[left1];
                                            array[left1] = array[left];
                                            array[left] = t;
                                        }
                                        swap_cnt = 1;
                                        left1++;
                                    }
                                    left++;
                                }
                                while( left <= right && !cmp(array[right], ta) ) {
                                    if( !cmp(ta, array[right]) ) {
                                        if( right < right1 ) {
                                            t = array[right1];
                                            array[right1] = array[right];
                                            array[right] = t;
                                        }
                                        swap_cnt = 1;
                                        right1--;
                                    }
                                    right--;
                                }
                                if( left > right ) break;
                                
                                t = array[left];
                                array[left] = array[right];
                                array[right] = t;
                                swap_cnt = 1;
                                left++;
                                right--;
                            }
                            if( swap_cnt == 0 ) {
                                left = left0, right = right0;
                                //goto insert_sort;
                                for( ptr = left + 1; ptr <= right; ptr++ ) {
                                    for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) {
                                        t = array[ptr2];
                                        array[ptr2] = array[ptr2-1];
                                        array[ptr2-1] = t;
                                    }
                                }
                                break;
                            }
                            n = Math.min( (left1 - left0), (left - left1) );
                            m = (left-n)|0;
                            for( i = 0; i < n; ++i,++m ) {
                                t = array[left0+i];
                                array[left0+i] = array[m];
                                array[m] = t;
                            }
                            n = Math.min( (right0 - right1), (right1 - right) );
                            m = (right0-n+1)|0;
                            for( i = 0; i < n; ++i,++m ) {
                                t = array[left+i];
                                array[left+i] = array[m];
                                array[m] = t;
                            }
                            n = (left - left1);
                            m = (right1 - right);
                            if( n > 1 ) {
                                if( m > 1 ) {
                                    if( n > m ) {
                                        ++sp;
                                        stack[sp<<1] = left0;
                                        stack[(sp<<1)+1] = left0 + n - 1;
                                        left = right0 - m + 1, right = right0;
                                    } else {
                                        ++sp;
                                        stack[sp<<1] = right0 - m + 1;
                                        stack[(sp<<1)+1] = right0;
                                        left = left0, right = left0 + n - 1;
                                    }
                                } else {
                                    left = left0, right = left0 + n - 1;
                                }
                            }
                            else if( m > 1 )
                                left = right0 - m + 1, right = right0;
                            else
                                break;
                        }
                    }
                }
            },
            median: function(array, low, high) {
                var w;
                var middle=0,ll=0,hh=0,median=(low+high)>>1;
                for (;;) {
                    if (high <= low) return array[median];
                    if (high == (low + 1)) {
                        if (array[low] > array[high]) {
                            w = array[low];
                            array[low] = array[high];
                            array[high] = w;
                        }
                        return array[median];
                    }
                    middle = ((low + high) >> 1);
                    if (array[middle] > array[high]) {
                        w = array[middle];
                        array[middle] = array[high];
                        array[high] = w;
                    }
                    if (array[low] > array[high]) {
                        w = array[low];
                        array[low] = array[high];
                        array[high] = w;
                    }
                    if (array[middle] > array[low]) {
                        w = array[middle];
                        array[middle] = array[low];
                        array[low] = w;
                    }
                    ll = (low + 1);
                    w = array[middle];
                    array[middle] = array[ll];
                    array[ll] = w;
                    hh = high;
                    for (;;) {
                        do ++ll; while (array[low] > array[ll]);
                        do --hh; while (array[hh] > array[low]);
                        if (hh < ll) break;
                        w = array[ll];
                        array[ll] = array[hh];
                        array[hh] = w;
                    }
                    w = array[low];
                    array[low] = array[hh];
                    array[hh] = w;
                    if (hh <= median)
                        low = ll;
                    else if (hh >= median)
                        high = (hh - 1);
                }
                return 0;
            }
        };
    })();
    global.math = math;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 */
(function(global) {
    "use strict";
    //
    var matmath = (function() {
        
        return {
            identity: function(M, value) {
                if (typeof value === "undefined") { value=1; }
                var src=M.data;
                var rows=M.rows, cols=M.cols, cols_1=(cols+1)|0;
                var len = rows * cols;
                var k = len;
                while(--len >= 0) src[len] = 0.0;
                len = k;
                k = 0;
                while(k < len)  {
                    src[k] = value;
                    k = k + cols_1;
                }
            },
            transpose: function(At, A) {
                var i=0,j=0,nrows=A.rows,ncols=A.cols;
                var Ai=0,Ati=0,pAt=0;
                var ad=A.data,atd=At.data;
                for (; i < nrows; Ati += 1, Ai += ncols, i++) {
                    pAt = Ati;
                    for (j = 0; j < ncols; pAt += nrows, j++) atd[pAt] = ad[Ai+j];
                }
            },
            // C = A * B
            multiply: function(C, A, B) {
                var i=0,j=0,k=0;
                var Ap=0,pA=0,pB=0,p_B=0,Cp=0;
                var ncols=A.cols,nrows=A.rows,mcols=B.cols;
                var ad=A.data,bd=B.data,cd=C.data;
                var sum=0.0;
                for (; i < nrows; Ap += ncols, i++) {
                    for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) {
                        pB = p_B;
                        pA = Ap;
                        sum = 0.0;
                        for (k = 0; k < ncols; pA++, pB += mcols, k++) {
                            sum += ad[pA] * bd[pB];
                        }
                        cd[Cp] = sum;
                    }
                }
            },
            // C = A * B'
            multiply_ABt: function(C, A, B) {
                var i=0,j=0,k=0;
                var Ap=0,pA=0,pB=0,Cp=0;
                var ncols=A.cols,nrows=A.rows,mrows=B.rows;
                var ad=A.data,bd=B.data,cd=C.data;
                var sum=0.0;
                for (; i < nrows; Ap += ncols, i++) {
                    for (pB = 0, j = 0; j < mrows; Cp++, j++) {
                        pA = Ap;
                        sum = 0.0;
                        for (k = 0; k < ncols; pA++, pB++, k++) {
                            sum += ad[pA] * bd[pB];
                        }
                        cd[Cp] = sum;
                    }
                }
            },
            // C = A' * B
            multiply_AtB: function(C, A, B) {
                var i=0,j=0,k=0;
                var Ap=0,pA=0,pB=0,p_B=0,Cp=0;
                var ncols=A.cols,nrows=A.rows,mcols=B.cols;
                var ad=A.data,bd=B.data,cd=C.data;
                var sum=0.0;
                for (; i < ncols; Ap++, i++) {
                    for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) {
                        pB = p_B;
                        pA = Ap;
                        sum = 0.0;
                        for (k = 0; k < nrows; pA += ncols, pB += mcols, k++) {
                            sum += ad[pA] * bd[pB];
                        }
                        cd[Cp] = sum;
                    }
                }
            },
            // C = A * A'
            multiply_AAt: function(C, A) {
                var i=0,j=0,k=0;
                var pCdiag=0,p_A=0,pA=0,pB=0,pC=0,pCt=0;
                var ncols=A.cols,nrows=A.rows;
                var ad=A.data,cd=C.data;
                var sum=0.0;
                for (; i < nrows; pCdiag += nrows + 1, p_A = pA, i++) {
                    pC = pCdiag;
                    pCt = pCdiag;
                    pB = p_A; 
                    for (j = i; j < nrows; pC++, pCt += nrows, j++) {
                        pA = p_A;
                        sum = 0.0;
                        for (k = 0; k < ncols; k++) {
                            sum += ad[pA++] * ad[pB++];
                        }
                        cd[pC] = sum
                        cd[pCt] = sum;
                    }
                }
            },
            // C = A' * A
            multiply_AtA: function(C, A) {
                var i=0,j=0,k=0;
                var p_A=0,pA=0,pB=0,p_C=0,pC=0,p_CC=0;
                var ncols=A.cols,nrows=A.rows;
                var ad=A.data,cd=C.data;
                var sum=0.0;
                for (; i < ncols; p_C += ncols, i++) {
                    p_A = i;
                    p_CC = p_C + i;
                    pC = p_CC;
                    for (j = i; j < ncols; pC++, p_CC += ncols, j++) {
                        pA = p_A;
                        pB = j;
                        sum = 0.0;
                        for (k = 0; k < nrows; pA += ncols, pB += ncols, k++) {
                            sum += ad[pA] * ad[pB];
                        }
                        cd[pC] = sum
                        cd[p_CC] = sum;
                    }
                }
            },
            // various small matrix operations
            identity_3x3: function(M, value) {
                if (typeof value === "undefined") { value=1; }
                var dt=M.data;
                dt[0] = dt[4] = dt[8] = value;
                dt[1] = dt[2] = dt[3] = 0;
                dt[5] = dt[6] = dt[7] = 0;
            },
            invert_3x3: function(from, to) {
                var A = from.data, invA = to.data;
                var t1 = A[4];
                var t2 = A[8];
                var t4 = A[5];
                var t5 = A[7];
                var t8 = A[0];
                var t9 = t8*t1;
                var t11 = t8*t4;
                var t13 = A[3];
                var t14 = A[1];
                var t15 = t13*t14;
                var t17 = A[2];
                var t18 = t13*t17;
                var t20 = A[6];
                var t21 = t20*t14;
                var t23 = t20*t17;
                var t26 = 1.0/(t9*t2-t11*t5-t15*t2+t18*t5+t21*t4-t23*t1);
                invA[0] = (t1*t2-t4*t5)*t26;
                invA[1] = -(t14*t2-t17*t5)*t26;
                invA[2] = -(-t14*t4+t17*t1)*t26;
                invA[3] = -(t13*t2-t4*t20)*t26;
                invA[4] = (t8*t2-t23)*t26;
                invA[5] = -(t11-t18)*t26;
                invA[6] = -(-t13*t5+t1*t20)*t26;
                invA[7] = -(t8*t5-t21)*t26;
                invA[8] = (t9-t15)*t26;
            },
            // C = A * B
            multiply_3x3: function(C, A, B) {
                var Cd=C.data, Ad=A.data, Bd=B.data;
                var m1_0 = Ad[0], m1_1 = Ad[1], m1_2 = Ad[2];
                var m1_3 = Ad[3], m1_4 = Ad[4], m1_5 = Ad[5];
                var m1_6 = Ad[6], m1_7 = Ad[7], m1_8 = Ad[8];
                var m2_0 = Bd[0], m2_1 = Bd[1], m2_2 = Bd[2];
                var m2_3 = Bd[3], m2_4 = Bd[4], m2_5 = Bd[5];
                var m2_6 = Bd[6], m2_7 = Bd[7], m2_8 = Bd[8];
                Cd[0] = m1_0 * m2_0 + m1_1 * m2_3 + m1_2 * m2_6;
                Cd[1] = m1_0 * m2_1 + m1_1 * m2_4 + m1_2 * m2_7;
                Cd[2] = m1_0 * m2_2 + m1_1 * m2_5 + m1_2 * m2_8;
                Cd[3] = m1_3 * m2_0 + m1_4 * m2_3 + m1_5 * m2_6;
                Cd[4] = m1_3 * m2_1 + m1_4 * m2_4 + m1_5 * m2_7;
                Cd[5] = m1_3 * m2_2 + m1_4 * m2_5 + m1_5 * m2_8;
                Cd[6] = m1_6 * m2_0 + m1_7 * m2_3 + m1_8 * m2_6;
                Cd[7] = m1_6 * m2_1 + m1_7 * m2_4 + m1_8 * m2_7;
                Cd[8] = m1_6 * m2_2 + m1_7 * m2_5 + m1_8 * m2_8;
            },
            mat3x3_determinant: function(M) {
                var md=M.data;
                return  md[0] * md[4] * md[8] -
                        md[0] * md[5] * md[7] -
                        md[3] * md[1] * md[8] +
                        md[3] * md[2] * md[7] +
                        md[6] * md[1] * md[5] -
                        md[6] * md[2] * md[4];
            },
            determinant_3x3: function(M11, M12, M13, 
                                      M21, M22, M23, 
                                      M31, M32, M33) {
                return  M11 * M22 * M33 - M11 * M23 * M32 -
                          M21 * M12 * M33 + M21 * M13 * M32 +
                          M31 * M12 * M23 - M31 * M13 * M22;
            }
        };
    })();
    global.matmath = matmath;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 */
(function(global) {
    "use strict";
    //
    var linalg = (function() {
        var swap = function(A, i0, i1, t) {
            t = A[i0];
            A[i0] = A[i1];
            A[i1] = t;
        }
        var hypot = function(a, b) {
            a = Math.abs(a);
            b = Math.abs(b);
            if( a > b ) {
                b /= a;
                return a*Math.sqrt(1.0 + b*b);
            }
            if( b > 0 ) {
                a /= b;
                return b*Math.sqrt(1.0 + a*a);
            }
            return 0.0;
        }
        var JacobiImpl = function(A, astep, W, V, vstep, n) {
            var eps = jsfeat.EPSILON;
            var i=0,j=0,k=0,m=0,l=0,idx=0,_in=0,_in2=0;
            var iters=0,max_iter=n*n*30;
            var mv=0.0,val=0.0,p=0.0,y=0.0,t=0.0,s=0.0,c=0.0,a0=0.0,b0=0.0;
            var indR_buff = jsfeat.cache.get_buffer(n<<2);
            var indC_buff = jsfeat.cache.get_buffer(n<<2);
            var indR = indR_buff.i32;
            var indC = indC_buff.i32;
            if(V) {
                for(; i < n; i++) {
                    k = i*vstep;
                    for(j = 0; j < n; j++) {
                        V[k + j] = 0.0;
                    }
                    V[k + i] = 1.0;
                }
            }
            for(k = 0; k < n; k++) {
                W[k] = A[(astep + 1)*k];
                if(k < n - 1) {
                    for(m = k+1, mv = Math.abs(A[astep*k + m]), i = k+2; i < n; i++) {
                        val = Math.abs(A[astep*k+i]);
                        if(mv < val)
                            mv = val, m = i;
                    }
                    indR[k] = m;
                }
                if(k > 0) {
                    for(m = 0, mv = Math.abs(A[k]), i = 1; i < k; i++) {
                        val = Math.abs(A[astep*i+k]);
                        if(mv < val)
                            mv = val, m = i;
                    }
                    indC[k] = m;
                }
            }
            if(n > 1) for( ; iters < max_iter; iters++) {
                // find index (k,l) of pivot p
                for(k = 0, mv = Math.abs(A[indR[0]]), i = 1; i < n-1; i++) {
                    val = Math.abs(A[astep*i + indR[i]]);
                    if( mv < val )
                        mv = val, k = i;
                }
                l = indR[k];
                for(i = 1; i < n; i++) {
                    val = Math.abs(A[astep*indC[i] + i]);
                    if( mv < val )
                        mv = val, k = indC[i], l = i;
                }
                
                p = A[astep*k + l];
                if(Math.abs(p) <= eps) break;
                y = (W[l] - W[k])*0.5;
                t = Math.abs(y) + hypot(p, y);
                s = hypot(p, t);
                c = t/s;
                s = p/s; t = (p/t)*p;
                if(y < 0)
                    s = -s, t = -t;
                A[astep*k + l] = 0;
                
                W[k] -= t;
                W[l] += t;
                
                // rotate rows and columns k and l
                for (i = 0; i < k; i++) {
                    _in = (astep * i + k);
                    _in2 = (astep * i + l);
                    a0 = A[_in];
                    b0 = A[_in2];
                    A[_in] = a0 * c - b0 * s;
                    A[_in2] = a0 * s + b0 * c;
                }
                for (i = (k + 1); i < l; i++) {
                    _in = (astep * k + i);
                    _in2 = (astep * i + l);
                    a0 = A[_in];
                    b0 = A[_in2];
                    A[_in] = a0 * c - b0 * s;
                    A[_in2] = a0 * s + b0 * c;
                }
                i = l + 1;
                _in = (astep * k + i);
                _in2 = (astep * l + i);
                for (; i < n; i++, _in++, _in2++) {
                    a0 = A[_in];
                    b0 = A[_in2];
                    A[_in] = a0 * c - b0 * s;
                    A[_in2] = a0 * s + b0 * c;
                }
                
                // rotate eigenvectors
                if (V) {
                    _in = vstep * k;
                    _in2 = vstep * l;
                    for (i = 0; i < n; i++, _in++, _in2++) {
                        a0 = V[_in];
                        b0 = V[_in2];
                        V[_in] = a0 * c - b0 * s;
                        V[_in2] = a0 * s + b0 * c;
                    }
                }
                
                for(j = 0; j < 2; j++) {
                    idx = j == 0 ? k : l;
                    if(idx < n - 1) {
                        for(m = idx+1, mv = Math.abs(A[astep*idx + m]), i = idx+2; i < n; i++) {
                            val = Math.abs(A[astep*idx+i]);
                            if( mv < val )
                                mv = val, m = i;
                        }
                        indR[idx] = m;
                    }
                    if(idx > 0) {
                        for(m = 0, mv = Math.abs(A[idx]), i = 1; i < idx; i++) {
                            val = Math.abs(A[astep*i+idx]);
                            if( mv < val )
                                mv = val, m = i;
                        }
                        indC[idx] = m;
                    }
                }
            }
            // sort eigenvalues & eigenvectors
            for(k = 0; k < n-1; k++) {
                m = k;
                for(i = k+1; i < n; i++) {
                    if(W[m] < W[i])
                        m = i;
                }
                if(k != m) {
                    swap(W, m, k, mv);
                    if(V) {
                        for(i = 0; i < n; i++) {
                            swap(V, vstep*m + i, vstep*k + i, mv);
                        }
                    }
                }
            }
            jsfeat.cache.put_buffer(indR_buff);
            jsfeat.cache.put_buffer(indC_buff);
        }
        var JacobiSVDImpl = function(At, astep, _W, Vt, vstep, m, n, n1) {
            var eps = jsfeat.EPSILON * 2.0;
            var minval = jsfeat.FLT_MIN;
            var i=0,j=0,k=0,iter=0,max_iter=Math.max(m, 30);
            var Ai=0,Aj=0,Vi=0,Vj=0,changed=0;
            var c=0.0, s=0.0, t=0.0;
            var t0=0.0,t1=0.0,sd=0.0,beta=0.0,gamma=0.0,delta=0.0,a=0.0,p=0.0,b=0.0;
            var seed = 0x1234;
            var val=0.0,val0=0.0,asum=0.0;
            var W_buff = jsfeat.cache.get_buffer(n<<3);
            var W = W_buff.f64;
            
            for(; i < n; i++) {
                for(k = 0, sd = 0; k < m; k++) {
                    t = At[i*astep + k];
                    sd += t*t;
                }
                W[i] = sd;
                
                if(Vt) {
                    for(k = 0; k < n; k++) {
                        Vt[i*vstep + k] = 0;
                    }
                    Vt[i*vstep + i] = 1;
                }
            }
            
            for(; iter < max_iter; iter++) {
                changed = 0;
                
                for(i = 0; i < n-1; i++) {
                    for(j = i+1; j < n; j++) {
                        Ai = (i*astep)|0, Aj = (j*astep)|0;
                        a = W[i], p = 0, b = W[j];
                        
                        k = 2;
                        p += At[Ai]*At[Aj];
                        p += At[Ai+1]*At[Aj+1];
                        for(; k < m; k++)
                            p += At[Ai+k]*At[Aj+k];
                        
                        if(Math.abs(p) <= eps*Math.sqrt(a*b)) continue;
                        
                        p *= 2.0;
                        beta = a - b, gamma = hypot(p, beta);
                        if( beta < 0 ) {
                            delta = (gamma - beta)*0.5;
                            s = Math.sqrt(delta/gamma);
                            c = (p/(gamma*s*2.0));
                        } else {
                            c = Math.sqrt((gamma + beta)/(gamma*2.0));
                            s = (p/(gamma*c*2.0));
                        }
                        
                        a=0.0, b=0.0;
                        
                        k = 2; // unroll
                        t0 = c*At[Ai] + s*At[Aj];
                        t1 = -s*At[Ai] + c*At[Aj];
                        At[Ai] = t0; At[Aj] = t1;
                        a += t0*t0; b += t1*t1;
                        t0 = c*At[Ai+1] + s*At[Aj+1];
                        t1 = -s*At[Ai+1] + c*At[Aj+1];
                        At[Ai+1] = t0; At[Aj+1] = t1;
                        a += t0*t0; b += t1*t1;
                        for( ; k < m; k++ )
                        {
                            t0 = c*At[Ai+k] + s*At[Aj+k];
                            t1 = -s*At[Ai+k] + c*At[Aj+k];
                            At[Ai+k] = t0; At[Aj+k] = t1;
                            
                            a += t0*t0; b += t1*t1;
                        }
                        
                        W[i] = a; W[j] = b;
                        
                        changed = 1;
                        
                        if(Vt) {
                            Vi = (i*vstep)|0, Vj = (j*vstep)|0;
                            k = 2;
                            t0 = c*Vt[Vi] + s*Vt[Vj];
                            t1 = -s*Vt[Vi] + c*Vt[Vj];
                            Vt[Vi] = t0; Vt[Vj] = t1;
                            t0 = c*Vt[Vi+1] + s*Vt[Vj+1];
                            t1 = -s*Vt[Vi+1] + c*Vt[Vj+1];
                            Vt[Vi+1] = t0; Vt[Vj+1] = t1;
                            for(; k < n; k++) {
                                t0 = c*Vt[Vi+k] + s*Vt[Vj+k];
                                t1 = -s*Vt[Vi+k] + c*Vt[Vj+k];
                                Vt[Vi+k] = t0; Vt[Vj+k] = t1;
                            }
                        }
                    }
                }
                if(changed == 0) break;
            }
            
            for(i = 0; i < n; i++) {
                for(k = 0, sd = 0; k < m; k++) {
                    t = At[i*astep + k];
                    sd += t*t;
                }
                W[i] = Math.sqrt(sd);
            }
            
            for(i = 0; i < n-1; i++) {
                j = i;
                for(k = i+1; k < n; k++) {
                    if(W[j] < W[k])
                        j = k;
                }
                if(i != j) {
                    swap(W, i, j, sd);
                    if(Vt) {
                        for(k = 0; k < m; k++) {
                            swap(At, i*astep + k, j*astep + k, t);
                        }
                        
                        for(k = 0; k < n; k++) {
                            swap(Vt, i*vstep + k, j*vstep + k, t);
                        }
                    }
                }
            }
            
            for(i = 0; i < n; i++) {
                _W[i] = W[i];
            }
            
            if(!Vt) {
                jsfeat.cache.put_buffer(W_buff);
                return;
            }
            for(i = 0; i < n1; i++) {
                sd = i < n ? W[i] : 0;
                
                while(sd <= minval) {
                    // if we got a zero singular value, then in order to get the corresponding left singular vector
                    // we generate a random vector, project it to the previously computed left singular vectors,
                    // subtract the projection and normalize the difference.
                    val0 = (1.0/m);
                    for(k = 0; k < m; k++) {
                        seed = (seed * 214013 + 2531011);
                        val = (((seed >> 16) & 0x7fff) & 256) != 0 ? val0 : -val0;
                        At[i*astep + k] = val;
                    }
                    for(iter = 0; iter < 2; iter++) {
                        for(j = 0; j < i; j++) {
                            sd = 0;
                            for(k = 0; k < m; k++) {
                                sd += At[i*astep + k]*At[j*astep + k];
                            }
                            asum = 0.0;
                            for(k = 0; k < m; k++) {
                                t = (At[i*astep + k] - sd*At[j*astep + k]);
                                At[i*astep + k] = t;
                                asum += Math.abs(t);
                            }
                            asum = asum ? 1.0/asum : 0;
                            for(k = 0; k < m; k++) {
                                At[i*astep + k] *= asum;
                            }
                        }
                    }
                    sd = 0;
                    for(k = 0; k < m; k++) {
                        t = At[i*astep + k];
                        sd += t*t;
                    }
                    sd = Math.sqrt(sd);
                }
                
                s = (1.0/sd);
                for(k = 0; k < m; k++) {
                    At[i*astep + k] *= s;
                }
            }
            jsfeat.cache.put_buffer(W_buff);
        }
        
        return {
            lu_solve: function(A, B) {
                var i=0,j=0,k=0,p=1,astep=A.cols;
                var ad=A.data, bd=B.data;
                var t,alpha,d,s;
                for(i = 0; i < astep; i++) {
                    k = i;                    
                    for(j = i+1; j < astep; j++) {
                        if(Math.abs(ad[j*astep + i]) > Math.abs(ad[k*astep+i])) {
                            k = j;
                        }
                    }
                    
                    if(Math.abs(ad[k*astep+i]) < jsfeat.EPSILON) {
                        return 0; // FAILED
                    }
                    
                    if(k != i) {
                        for(j = i; j < astep; j++ ) {
                            swap(ad, i*astep+j, k*astep+j, t);
                        }
                        
                        swap(bd, i, k, t);
                        p = -p;
                    }
                    
                    d = -1.0/ad[i*astep+i];
                    
                    for(j = i+1; j < astep; j++) {
                        alpha = ad[j*astep+i]*d;
                        
                        for(k = i+1; k < astep; k++) {
                            ad[j*astep+k] += alpha*ad[i*astep+k];
                        }
                        
                        bd[j] += alpha*bd[i];
                    }
                    
                    ad[i*astep+i] = -d;
                }
                
                for(i = astep-1; i >= 0; i--) {
                    s = bd[i];
                    for(k = i+1; k < astep; k++) {
                        s -= ad[i*astep+k]*bd[k];
                    }
                    bd[i] = s*ad[i*astep+i];
                }
                return 1; // OK
            },
            cholesky_solve: function(A, B) {
                var col=0,row=0,col2=0,cs=0,rs=0,i=0,j=0;
                var size = A.cols;
                var ad=A.data, bd=B.data;
                var val,inv_diag;
                for (col = 0; col < size; col++) {
                    inv_diag = 1.0;
                    cs = (col * size);
                    rs = cs;
                    for (row = col; row < size; row++)
                    {
                        // correct for the parts of cholesky already computed
                        val = ad[(rs+col)];
                        for (col2 = 0; col2 < col; col2++) {
                            val -= ad[(col2*size+col)] * ad[(rs+col2)];
                        }
                        if (row == col) {
                            // this is the diagonal element so don't divide
                            ad[(rs+col)] = val;
                            if(val == 0) {
                                return 0;
                            }
                            inv_diag = 1.0 / val;
                        } else {
                            // cache the value without division in the upper half
                            ad[(cs+row)] = val;
                            // divide my the diagonal element for all others
                            ad[(rs+col)] = val * inv_diag;
                        }
                        rs = (rs + size);
                    }
                }
                // first backsub through L
                cs = 0;
                for (i = 0; i < size; i++) {
                    val = bd[i];
                    for (j = 0; j < i; j++) {
                        val -= ad[(cs+j)] * bd[j];
                    }
                    bd[i] = val;
                    cs = (cs + size);
                }
                // backsub through diagonal
                cs = 0;
                for (i = 0; i < size; i++) {
                    bd[i] /= ad[(cs + i)];
                    cs = (cs + size);
                }
                // backsub through L Transpose
                i = (size-1);
                for (; i >= 0; i--) {
                    val = bd[i];
                    j = (i + 1);
                    cs = (j * size);
                    for (; j < size; j++) {
                        val -= ad[(cs + i)] * bd[j];
                        cs = (cs + size);
                    }
                    bd[i] = val;
                }
                return 1;
            },
            svd_decompose: function(A, W, U, V, options) {
                if (typeof options === "undefined") { options = 0; };
                var at=0,i=0,j=0,_m=A.rows,_n=A.cols,m=_m,n=_n;
                var dt = A.type | jsfeat.C1_t; // we only work with single channel
                if(m < n) {
                    at = 1;
                    i = m;
                    m = n;
                    n = i;
                }
                var a_buff = jsfeat.cache.get_buffer((m*m)<<3);
                var w_buff = jsfeat.cache.get_buffer(n<<3);
                var v_buff = jsfeat.cache.get_buffer((n*n)<<3);
                var a_mt = new jsfeat.matrix_t(m, m, dt, a_buff.data);
                var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data);
                var v_mt = new jsfeat.matrix_t(n, n, dt, v_buff.data);
                if(at == 0) {
                    // transpose
                    jsfeat.matmath.transpose(a_mt, A);
                } else {
                    for(i = 0; i < _n*_m; i++) {
                        a_mt.data[i] = A.data[i];
                    }
                    for(; i < n*m; i++) {
                        a_mt.data[i] = 0;
                    }
                }
                JacobiSVDImpl(a_mt.data, m, w_mt.data, v_mt.data, n, m, n, m);
                if(W) {
                    for(i=0; i < n; i++) {
                        W.data[i] = w_mt.data[i];
                    }
                    for(; i < _n; i++) {
                        W.data[i] = 0;
                    }
                }
                if (at == 0) {
                    if(U && (options & jsfeat.SVD_U_T)) {
                        i = m*m;
                        while(--i >= 0) {
                            U.data[i] = a_mt.data[i];
                        }
                    } else if(U) {
                        jsfeat.matmath.transpose(U, a_mt);
                    }
                    if(V && (options & jsfeat.SVD_V_T)) {
                        i = n*n;
                        while(--i >= 0) {
                            V.data[i] = v_mt.data[i];
                        }
                    } else if(V) {
                        jsfeat.matmath.transpose(V, v_mt);
                    }
                } else {
                    if(U && (options & jsfeat.SVD_U_T)) {
                        i = n*n;
                        while(--i >= 0) {
                            U.data[i] = v_mt.data[i];
                        }
                    } else if(U) {
                        jsfeat.matmath.transpose(U, v_mt);
                    }
                    if(V && (options & jsfeat.SVD_V_T)) {
                        i = m*m;
                        while(--i >= 0) {
                            V.data[i] = a_mt.data[i];
                        }
                    } else if(V) {
                        jsfeat.matmath.transpose(V, a_mt);
                    }
                }
                jsfeat.cache.put_buffer(a_buff);
                jsfeat.cache.put_buffer(w_buff);
                jsfeat.cache.put_buffer(v_buff);
            },
            svd_solve: function(A, X, B) {
                var i=0,j=0,k=0;
                var pu=0,pv=0;
                var nrows=A.rows,ncols=A.cols;
                var sum=0.0,xsum=0.0,tol=0.0;
                var dt = A.type | jsfeat.C1_t;
                var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3);
                var w_buff = jsfeat.cache.get_buffer(ncols<<3);
                var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3);
                var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data);
                var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data);
                var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data);
                var bd = B.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data;
                this.svd_decompose(A, w_mt, u_mt, v_mt, 0);
                tol = jsfeat.EPSILON * wd[0] * ncols;
                for (; i < ncols; i++, pv += ncols) {
                    xsum = 0.0;
                    for(j = 0; j < ncols; j++) {
                        if(wd[j] > tol) {
                            for(k = 0, sum = 0.0, pu = 0; k < nrows; k++, pu += ncols) {
                                sum += ud[pu + j] * bd[k];
                            }
                            xsum += sum * vd[pv + j] / wd[j];
                        }
                    }
                    X.data[i] = xsum;
                }
                jsfeat.cache.put_buffer(u_buff);
                jsfeat.cache.put_buffer(w_buff);
                jsfeat.cache.put_buffer(v_buff);
            },
            svd_invert: function(Ai, A) {
                var i=0,j=0,k=0;
                var pu=0,pv=0,pa=0;
                var nrows=A.rows,ncols=A.cols;
                var sum=0.0,tol=0.0;
                var dt = A.type | jsfeat.C1_t;
                var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3);
                var w_buff = jsfeat.cache.get_buffer(ncols<<3);
                var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3);
                var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data);
                var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data);
                var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data);
                var id = Ai.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data;
                this.svd_decompose(A, w_mt, u_mt, v_mt, 0);
                tol = jsfeat.EPSILON * wd[0] * ncols;
                for (; i < ncols; i++, pv += ncols) {
                    for (j = 0, pu = 0; j < nrows; j++, pa++) {
                        for (k = 0, sum = 0.0; k < ncols; k++, pu++) {
                            if (wd[k] > tol) sum += vd[pv + k] * ud[pu] / wd[k];
                        }
                        id[pa] = sum;
                    }
                }
                jsfeat.cache.put_buffer(u_buff);
                jsfeat.cache.put_buffer(w_buff);
                jsfeat.cache.put_buffer(v_buff);
            },
            eigenVV: function(A, vects, vals) {
                var n=A.cols,i=n*n;
                var dt = A.type | jsfeat.C1_t;
                var a_buff = jsfeat.cache.get_buffer((n*n)<<3);
                var w_buff = jsfeat.cache.get_buffer(n<<3);
                var a_mt = new jsfeat.matrix_t(n, n, dt, a_buff.data);
                var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data);
                while(--i >= 0) {
                    a_mt.data[i] = A.data[i];
                }
                JacobiImpl(a_mt.data, n, w_mt.data, vects ? vects.data : null, n, n);
                if(vals) {
                    while(--n >= 0) {
                        vals.data[n] = w_mt.data[n];
                    }
                }
                jsfeat.cache.put_buffer(a_buff);
                jsfeat.cache.put_buffer(w_buff);
            }
        };
    })();
    global.linalg = linalg;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 */
(function(global) {
    "use strict";
    //
    var motion_model = (function() {
    	var sqr = function(x) {
    		return x*x;
    	}
    	// does isotropic normalization
    	var iso_normalize_points = function(from, to, T0, T1, count) {
			var i=0;
		    var cx0=0.0, cy0=0.0, d0=0.0, s0=0.0;
		    var cx1=0.0, cy1=0.0, d1=0.0, s1=0.0;
		    var dx=0.0,dy=0.0;
		    for (; i < count; ++i) {
		        cx0 += from[i].x;
		        cy0 += from[i].y;
		        cx1 += to[i].x;
		        cy1 += to[i].y;
		    }
		    cx0 /= count; cy0 /= count;
		    cx1 /= count; cy1 /= count;
		    for (i = 0; i < count; ++i) {
		        dx = from[i].x - cx0;
		        dy = from[i].y - cy0;
		        d0 += Math.sqrt(dx*dx + dy*dy);
		        dx = to[i].x - cx1;
		        dy = to[i].y - cy1;
		        d1 += Math.sqrt(dx*dx + dy*dy);
		    }
		    d0 /= count; d1 /= count;
		    s0 = Math.SQRT2 / d0; s1 = Math.SQRT2 / d1;
		    T0[0] = T0[4] = s0;
		    T0[2] = -cx0*s0;
		    T0[5] = -cy0*s0;
		    T0[1] = T0[3] = T0[6] = T0[7] = 0.0;
		    T0[8] = 1.0;
		    T1[0] = T1[4] = s1;
		    T1[2] = -cx1*s1;
		    T1[5] = -cy1*s1;
		    T1[1] = T1[3] = T1[6] = T1[7] = 0.0;
		    T1[8] = 1.0;
		}
		var have_collinear_points = function(points, count) {
		    var j=0,k=0,i=(count-1)|0;
		    var dx1=0.0,dy1=0.0,dx2=0.0,dy2=0.0;
		    // check that the i-th selected point does not belong
		    // to a line connecting some previously selected points
		    for(; j < i; ++j) {
		        dx1 = points[j].x - points[i].x;
		        dy1 = points[j].y - points[i].y;
		        for(k = 0; k < j; ++k) {
		            dx2 = points[k].x - points[i].x;
		            dy2 = points[k].y - points[i].y;
		            if( Math.abs(dx2*dy1 - dy2*dx1) <= jsfeat.EPSILON*(Math.abs(dx1) + Math.abs(dy1) + Math.abs(dx2) + Math.abs(dy2)))
		                return true;
		        }
		    }
		    return false;
		}
		var T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
    	var T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
    	var AtA = new jsfeat.matrix_t(6, 6, jsfeat.F32_t|jsfeat.C1_t);
    	var AtB = new jsfeat.matrix_t(6, 1, jsfeat.F32_t|jsfeat.C1_t);
    	
    	var affine2d = (function () {
	        function affine2d() {
	        	// empty constructor
	        }
	        affine2d.prototype.run = function(from, to, model, count) {
	        	var i=0,j=0;
	        	var dt=model.type|jsfeat.C1_t;
	        	var md=model.data, t0d=T0.data, t1d=T1.data;
	        	var pt0,pt1,px=0.0,py=0.0;
	            iso_normalize_points(from, to, t0d, t1d, count);
	            var a_buff = jsfeat.cache.get_buffer((2*count*6)<<3);
                var b_buff = jsfeat.cache.get_buffer((2*count)<<3);
                var a_mt = new jsfeat.matrix_t(6, 2*count, dt, a_buff.data);
                var b_mt = new jsfeat.matrix_t(1, 2*count, dt, b_buff.data);
                var ad=a_mt.data, bd=b_mt.data;
			    for (; i < count; ++i) {
			    	pt0 = from[i];
			        pt1 = to[i];
			        px = t0d[0]*pt0.x + t0d[1]*pt0.y + t0d[2];
			        py = t0d[3]*pt0.x + t0d[4]*pt0.y + t0d[5];
			        j = i*2*6;
			        ad[j]=px, ad[j+1]=py, ad[j+2]=1.0, ad[j+3]=0.0, ad[j+4]=0.0, ad[j+5]=0.0;
			        j += 6;
			        ad[j]=0.0, ad[j+1]=0.0, ad[j+2]=0.0, ad[j+3]=px, ad[j+4]=py, ad[j+5]=1.0;
			        bd[i<<1] = t1d[0]*pt1.x + t1d[1]*pt1.y + t1d[2];
			        bd[(i<<1)+1] = t1d[3]*pt1.x + t1d[4]*pt1.y + t1d[5];
			    }
			    jsfeat.matmath.multiply_AtA(AtA, a_mt);
			    jsfeat.matmath.multiply_AtB(AtB, a_mt, b_mt);
			    jsfeat.linalg.lu_solve(AtA, AtB);
			    md[0] = AtB.data[0], md[1]=AtB.data[1], md[2]=AtB.data[2];
			    md[3] = AtB.data[3], md[4]=AtB.data[4], md[5]=AtB.data[5];
			    md[6] = 0.0, md[7] = 0.0, md[8] = 1.0; // fill last row
			    // denormalize
			    jsfeat.matmath.invert_3x3(T1, T1);
			    jsfeat.matmath.multiply_3x3(model, T1, model);
			    jsfeat.matmath.multiply_3x3(model, model, T0);
			    // free buffer
			    jsfeat.cache.put_buffer(a_buff);
			    jsfeat.cache.put_buffer(b_buff);
			    return 1;
	        }
	        affine2d.prototype.error = function(from, to, model, err, count) {
	        	var i=0;
	        	var pt0,pt1;
	        	var m=model.data;
			    for (; i < count; ++i) {
			        pt0 = from[i];
			        pt1 = to[i];
			        err[i] = sqr(pt1.x - m[0]*pt0.x - m[1]*pt0.y - m[2]) +
			                 sqr(pt1.y - m[3]*pt0.x - m[4]*pt0.y - m[5]);
			    }
	        }
	        affine2d.prototype.check_subset = function(from, to, count) {
	            return true; // all good
	        }
	        return affine2d;
	    })();
	    var mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
	    var Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
	    var homography2d = (function () {
	        function homography2d() {
	        	// empty constructor
	        	//this.T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
	        	//this.T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
	        	//this.mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
	        	//this.Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
	        }
	        homography2d.prototype.run = function(from, to, model, count) {
	        	var i=0,j=0;
	        	var md=model.data, t0d=T0.data, t1d=T1.data;
	        	var LtL=mLtL.data, evd=Evec.data;
	        	var x=0.0,y=0.0,X=0.0,Y=0.0;
			    // norm
				var smx=0.0, smy=0.0, cmx=0.0, cmy=0.0, sMx=0.0, sMy=0.0, cMx=0.0, cMy=0.0;
				for(; i < count; ++i) {
				    cmx += to[i].x;
				    cmy += to[i].y;
				    cMx += from[i].x;
				    cMy += from[i].y;
				}
			    cmx /= count; cmy /= count;
			    cMx /= count; cMy /= count;
			    for(i = 0; i < count; ++i)
			    {
				    smx += Math.abs(to[i].x - cmx);
				    smy += Math.abs(to[i].y - cmy);
				    sMx += Math.abs(from[i].x - cMx);
				    sMy += Math.abs(from[i].y - cMy);
				}
			    if( Math.abs(smx) < jsfeat.EPSILON 
			    	|| Math.abs(smy) < jsfeat.EPSILON 
			    	|| Math.abs(sMx) < jsfeat.EPSILON 
			    	|| Math.abs(sMy) < jsfeat.EPSILON ) return 0;
			    smx = count/smx; smy = count/smy;
			    sMx = count/sMx; sMy = count/sMy;
			    t0d[0] = sMx; 	t0d[1] = 0; 	t0d[2] = -cMx*sMx; 
			    t0d[3] = 0; 	t0d[4] = sMy; 	t0d[5] = -cMy*sMy; 
			    t0d[6] = 0; 	t0d[7] = 0; 	t0d[8] = 1;
				t1d[0] = 1.0/smx; 	t1d[1] = 0; 		t1d[2] = cmx;
				t1d[3] = 0; 		t1d[4] = 1.0/smy; 	t1d[5] = cmy;
				t1d[6] = 0; 		t1d[7] = 0; 		t1d[8] = 1;
				//
				// construct system
				i = 81;
				while(--i >= 0) {
					LtL[i] = 0.0;
				}
				for(i = 0; i < count; ++i) {
					x = (to[i].x - cmx) * smx;
					y = (to[i].y - cmy) * smy;
					X = (from[i].x - cMx) * sMx;
					Y = (from[i].y - cMy) * sMy;
					LtL[0] += X*X;
					LtL[1] += X*Y;
					LtL[2] += X;
					LtL[6] += X*-x*X;
					LtL[7] += X*-x*Y;
					LtL[8] += X*-x;
					LtL[10] += Y*Y;
					LtL[11] += Y;
					LtL[15] += Y*-x*X;
					LtL[16] += Y*-x*Y;
					LtL[17] += Y*-x;
					LtL[20] += 1.0;
					LtL[24] += -x*X;
					LtL[25] += -x*Y;
					LtL[26] += -x;
					LtL[30] += X*X;
					LtL[31] += X*Y;
					LtL[32] += X;
					LtL[33] += X*-y*X;
					LtL[34] += X*-y*Y;
					LtL[35] += X*-y;
					LtL[40] += Y*Y;
					LtL[41] += Y;
					LtL[42] += Y*-y*X;
					LtL[43] += Y*-y*Y;
					LtL[44] += Y*-y;
					LtL[50] += 1.0;
					LtL[51] += -y*X;
					LtL[52] += -y*Y;
					LtL[53] += -y;
					LtL[60] += -x*X*-x*X + -y*X*-y*X;
					LtL[61] += -x*X*-x*Y + -y*X*-y*Y;
					LtL[62] += -x*X*-x + -y*X*-y;
					LtL[70] += -x*Y*-x*Y + -y*Y*-y*Y;
					LtL[71] += -x*Y*-x + -y*Y*-y;
					LtL[80] += -x*-x + -y*-y;
				}
				//
				// symmetry
			    for(i = 0; i < 9; ++i) {
			        for(j = 0; j < i; ++j)
			            LtL[i*9+j] = LtL[j*9+i];
			    }
				jsfeat.linalg.eigenVV(mLtL, Evec);
				md[0]=evd[72], md[1]=evd[73], md[2]=evd[74];
			    md[3]=evd[75], md[4]=evd[76], md[5]=evd[77];
			    md[6]=evd[78], md[7]=evd[79], md[8]=evd[80];
				// denormalize
			    jsfeat.matmath.multiply_3x3(model, T1, model);
			    jsfeat.matmath.multiply_3x3(model, model, T0);
			    // set bottom right to 1.0
			    x = 1.0/md[8];
			    md[0] *= x; md[1] *= x; md[2] *= x;
			    md[3] *= x; md[4] *= x; md[5] *= x;
			    md[6] *= x; md[7] *= x; md[8] = 1.0;
			    return 1;
	        }
	        homography2d.prototype.error = function(from, to, model, err, count) {
	        	var i=0;
	        	var pt0,pt1,ww=0.0,dx=0.0,dy=0.0;
	        	var m=model.data;
			    for (; i < count; ++i) {
			        pt0 = from[i];
			        pt1 = to[i];
			        ww = 1.0/(m[6]*pt0.x + m[7]*pt0.y + 1.0);
			        dx = (m[0]*pt0.x + m[1]*pt0.y + m[2])*ww - pt1.x;
			        dy = (m[3]*pt0.x + m[4]*pt0.y + m[5])*ww - pt1.y;
			        err[i] = (dx*dx + dy*dy);
			    }
	        }
	        homography2d.prototype.check_subset = function(from, to, count) {
	        	// seems to reject good subsets actually
	        	//if( have_collinear_points(from, count) || have_collinear_points(to, count) ) {
        			//return false;
        		//}
        		if( count == 4 ) {
			        var negative = 0;
			        var fp0=from[0],fp1=from[1],fp2=from[2],fp3=from[3];
			        var tp0=to[0],tp1=to[1],tp2=to[2],tp3=to[3];
			        // set1
			        var A11=fp0.x, A12=fp0.y, A13=1.0;
			        var A21=fp1.x, A22=fp1.y, A23=1.0;
			        var A31=fp2.x, A32=fp2.y, A33=1.0;
			        var B11=tp0.x, B12=tp0.y, B13=1.0;
			        var B21=tp1.x, B22=tp1.y, B23=1.0;
			        var B31=tp2.x, B32=tp2.y, B33=1.0;
			        var detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
					var detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
					if(detA*detB < 0) negative++;
					// set2
					A11=fp1.x, A12=fp1.y;
			        A21=fp2.x, A22=fp2.y;
			        A31=fp3.x, A32=fp3.y;
			        B11=tp1.x, B12=tp1.y;
			        B21=tp2.x, B22=tp2.y;
			        B31=tp3.x, B32=tp3.y;
			        detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
					detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
					if(detA*detB < 0) negative++;
					// set3
					A11=fp0.x, A12=fp0.y;
			        A21=fp2.x, A22=fp2.y;
			        A31=fp3.x, A32=fp3.y;
			        B11=tp0.x, B12=tp0.y;
			        B21=tp2.x, B22=tp2.y;
			        B31=tp3.x, B32=tp3.y;
			        detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
					detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
					if(detA*detB < 0) negative++;
					// set4
					A11=fp0.x, A12=fp0.y;
			        A21=fp1.x, A22=fp1.y;
			        A31=fp3.x, A32=fp3.y;
			        B11=tp0.x, B12=tp0.y;
			        B21=tp1.x, B22=tp1.y;
			        B31=tp3.x, B32=tp3.y;
			        detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
					detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
					if(detA*detB < 0) negative++;
			        if(negative != 0 && negative != 4) {
			        	return false;
			        }
			    }
	            return true; // all good
	        }
	        return homography2d;
	    })();
	    return {
    		affine2d:affine2d,
    		homography2d:homography2d
    	};
    })();
    var ransac_params_t = (function () {
        function ransac_params_t(size, thresh, eps, prob) {
            if (typeof size === "undefined") { size=0; }
            if (typeof thresh === "undefined") { thresh=0.5; }
            if (typeof eps === "undefined") { eps=0.5; }
            if (typeof prob === "undefined") { prob=0.99; }
            this.size = size;
            this.thresh = thresh;
            this.eps = eps;
            this.prob = prob;
        };
        ransac_params_t.prototype.update_iters = function(_eps, max_iters) {
	        var num = Math.log(1 - this.prob);
	        var denom = Math.log(1 - Math.pow(1 - _eps, this.size));
	        return (denom >= 0 || -num >= max_iters*(-denom) ? max_iters : Math.round(num/denom))|0;
        };
        return ransac_params_t;
    })();
    var motion_estimator = (function() {
    	var get_subset = function(kernel, from, to, need_cnt, max_cnt, from_sub, to_sub) {
    		var max_try = 1000;
    		var indices = [];
		    var i=0, j=0, ssiter=0, idx_i=0, ok=false;
		    for(; ssiter < max_try; ++ssiter)  {
		        i = 0;
		        for (; i < need_cnt && ssiter < max_try;) {
		            ok = false;
		            idx_i = 0;
		            while (!ok) {
		                ok = true;
		                idx_i = indices[i] = Math.floor(Math.random() * max_cnt)|0;
		                for (j = 0; j < i; ++j) {
		                    if (idx_i == indices[j])
		                    { ok = false; break; }
		                }
		            }
		            from_sub[i] = from[idx_i];
		            to_sub[i] = to[idx_i];
		            if( !kernel.check_subset( from_sub, to_sub, i+1 ) ) {
		                ssiter++;
		                continue;
		            }
		            ++i;
		        }
		        break;
		    }
		    return (i == need_cnt && ssiter < max_try);
    	}
    	var find_inliers = function(kernel, model, from, to, count, thresh, err, mask) {
    		var numinliers = 0, i=0, f=0;
    		var t = thresh*thresh;
    		kernel.error(from, to, model, err, count);
		    for(; i < count; ++i) {
		        f = err[i] <= t;
		        mask[i] = f;
		        numinliers += f;
		    }
		    return numinliers;
    	}
    	return {
    		ransac: function(params, kernel, from, to, count, model, mask, max_iters) {
    			if (typeof max_iters === "undefined") { max_iters=1000; }
    			if(count < params.size) return false;
    			var model_points = params.size;
			    var niters = max_iters, iter=0;
			    var result = false;
			    var subset0 = [];
			    var subset1 = [];
			    var found = false;
			    var mc=model.cols,mr=model.rows;
                var dt = model.type | jsfeat.C1_t;
			    var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3);
			    var ms_buff = jsfeat.cache.get_buffer(count);
			    var err_buff = jsfeat.cache.get_buffer(count<<2);
			    var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data);
			    var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8C1_t, ms_buff.data);
			    var inliers_max = -1, numinliers=0;
			    var nmodels = 0;
			    var err = err_buff.f32;
			    // special case
			    if(count == model_points) {
			        if(kernel.run(from, to, M, count) <= 0) {
			        	jsfeat.cache.put_buffer(m_buff);
			        	jsfeat.cache.put_buffer(ms_buff);
			        	jsfeat.cache.put_buffer(err_buff);
			        	return false;
			        }
			        M.copy_to(model);
			        if(mask) {
			        	while(--count >= 0) {
			        		mask.data[count] = 1;
			        	}
			        }
			        jsfeat.cache.put_buffer(m_buff);
			        jsfeat.cache.put_buffer(ms_buff);
			        jsfeat.cache.put_buffer(err_buff);
			        return true;
			    }
			    for (; iter < niters; ++iter) {
			        // generate subset
			        found = get_subset(kernel, from, to, model_points, count, subset0, subset1);
			        if(!found) {
			            if(iter == 0) {
			            	jsfeat.cache.put_buffer(m_buff);
			            	jsfeat.cache.put_buffer(ms_buff);
			            	jsfeat.cache.put_buffer(err_buff);
			                return false;
			            }
			            break;
			        }
			        nmodels = kernel.run( subset0, subset1, M, model_points );
			        if(nmodels <= 0)
			            continue;
			        // TODO handle multimodel output
			        numinliers = find_inliers(kernel, M, from, to, count, params.thresh, err, curr_mask.data);
			        if( numinliers > Math.max(inliers_max, model_points-1) ) {
			            M.copy_to(model);
			            inliers_max = numinliers;
			            if(mask) curr_mask.copy_to(mask);
			            niters = params.update_iters((count - numinliers)/count, niters);
			            result = true;
			        }
			    }
			    jsfeat.cache.put_buffer(m_buff);
			    jsfeat.cache.put_buffer(ms_buff);
			    jsfeat.cache.put_buffer(err_buff);
			    return result;
    		},
    		lmeds: function(params, kernel, from, to, count, model, mask, max_iters) {
    			if (typeof max_iters === "undefined") { max_iters=1000; }
    			if(count < params.size) return false;
    			var model_points = params.size;
			    var niters = max_iters, iter=0;
			    var result = false;
			    var subset0 = [];
			    var subset1 = [];
			    var found = false;
			    var mc=model.cols,mr=model.rows;
                var dt = model.type | jsfeat.C1_t;
			    var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3);
			    var ms_buff = jsfeat.cache.get_buffer(count);
			    var err_buff = jsfeat.cache.get_buffer(count<<2);
			    var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data);
			    var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8_t|jsfeat.C1_t, ms_buff.data);
			    var numinliers=0;
			    var nmodels = 0;
			    var err = err_buff.f32;
			    var min_median = 1000000000.0, sigma=0.0, median=0.0;
			    params.eps = 0.45;
			    niters = params.update_iters(params.eps, niters);
			    // special case
			    if(count == model_points) {
			        if(kernel.run(from, to, M, count) <= 0) {
			        	jsfeat.cache.put_buffer(m_buff);
			        	jsfeat.cache.put_buffer(ms_buff);
			        	jsfeat.cache.put_buffer(err_buff);
			        	return false;
			        }
			        M.copy_to(model);
			        if(mask) {
			        	while(--count >= 0) {
			        		mask.data[count] = 1;
			        	}
			        }
			        jsfeat.cache.put_buffer(m_buff);
			        jsfeat.cache.put_buffer(ms_buff);
			        jsfeat.cache.put_buffer(err_buff);
			        return true;
			    }
			    for (; iter < niters; ++iter) {
			        // generate subset
			        found = get_subset(kernel, from, to, model_points, count, subset0, subset1);
			        if(!found) {
			            if(iter == 0) {
			            	jsfeat.cache.put_buffer(m_buff);
			            	jsfeat.cache.put_buffer(ms_buff);
			            	jsfeat.cache.put_buffer(err_buff);
			                return false;
			            }
			            break;
			        }
			        nmodels = kernel.run( subset0, subset1, M, model_points );
			        if(nmodels <= 0)
			            continue;
			        // TODO handle multimodel output
			        kernel.error(from, to, M, err, count);
			        median = jsfeat.math.median(err, 0, count-1);
			        if(median < min_median) {
			            min_median = median;
			            M.copy_to(model);
			            result = true;
			        }
			    }
			    if(result) {
			        sigma = 2.5*1.4826*(1 + 5.0/(count - model_points))*Math.sqrt(min_median);
			        sigma = Math.max(sigma, 0.001);
			        numinliers = find_inliers(kernel, model, from, to, count, sigma, err, curr_mask.data);
			        if(mask) curr_mask.copy_to(mask);
			        
			        result = numinliers >= model_points;
			    }
			    jsfeat.cache.put_buffer(m_buff);
			    jsfeat.cache.put_buffer(ms_buff);
			    jsfeat.cache.put_buffer(err_buff);
			    return result;
    		}
    	};
    })();
    global.ransac_params_t = ransac_params_t;
    global.motion_model = motion_model;
    global.motion_estimator = motion_estimator;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
(function(global) {
    "use strict";
    //
    var imgproc = (function() {
        var _resample_u8 = function(src, dst, nw, nh) {
            var xofs_count=0;
            var ch=src.channel,w=src.cols,h=src.rows;
            var src_d=src.data,dst_d=dst.data;
            var scale_x = w / nw, scale_y = h / nh;
            var inv_scale_256 = (scale_x * scale_y * 0x10000)|0;
            var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0;
            var a=0,b=0,dxn=0,alpha=0,beta=0,beta1=0;
            var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2);
            var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2);
            var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2);
            var buf = buf_node.i32;
            var sum = sum_node.i32;
            var xofs = xofs_node.i32;
            for (; dx < nw; dx++) {
                fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x;
                sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0;
                sx1 = Math.min(sx1, w - 1);
                sx2 = Math.min(sx2, w - 1);
                if(sx1 > fsx1) {
                    xofs[k++] = (dx * ch)|0;
                    xofs[k++] = ((sx1 - 1)*ch)|0; 
                    xofs[k++] = ((sx1 - fsx1) * 0x100)|0;
                    xofs_count++;
                }
                for(sx = sx1; sx < sx2; sx++){
                    xofs_count++;
                    xofs[k++] = (dx * ch)|0;
                    xofs[k++] = (sx * ch)|0;
                    xofs[k++] = 256;
                }
                if(fsx2 - sx2 > 1e-3) {
                    xofs_count++;
                    xofs[k++] = (dx * ch)|0;
                    xofs[k++] = (sx2 * ch)|0;
                    xofs[k++] = ((fsx2 - sx2) * 256)|0;
                }
            }
            for (dx = 0; dx < nw * ch; dx++) {
                buf[dx] = sum[dx] = 0;
            }
            dy = 0;
            for (sy = 0; sy < h; sy++) {
                a = w * sy;
                for (k = 0; k < xofs_count; k++) {
                    dxn = xofs[k*3];
                    sx1 = xofs[k*3+1];
                    alpha = xofs[k*3+2];
                    for (i = 0; i < ch; i++) {
                        buf[dxn + i] += src_d[a+sx1+i] * alpha;
                    }
                }
                if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) {
                    beta = (Math.max(sy + 1 - (dy + 1) * scale_y, 0.0) * 256)|0;
                    beta1 = 256 - beta;
                    b = nw * dy;
                    if (beta <= 0) {
                        for (dx = 0; dx < nw * ch; dx++) {
                            dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * 256) / inv_scale_256, 0), 255);
                            sum[dx] = buf[dx] = 0;
                        }
                    } else {
                        for (dx = 0; dx < nw * ch; dx++) {
                            dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * beta1) / inv_scale_256, 0), 255);
                            sum[dx] = buf[dx] * beta;
                            buf[dx] = 0;
                        }
                    }
                    dy++;
                } else {
                    for(dx = 0; dx < nw * ch; dx++) {
                        sum[dx] += buf[dx] * 256;
                        buf[dx] = 0;
                    }
                }
            }
            jsfeat.cache.put_buffer(sum_node);
            jsfeat.cache.put_buffer(buf_node);
            jsfeat.cache.put_buffer(xofs_node);
        }
        var _resample = function(src, dst, nw, nh) {
            var xofs_count=0;
            var ch=src.channel,w=src.cols,h=src.rows;
            var src_d=src.data,dst_d=dst.data;
            var scale_x = w / nw, scale_y = h / nh;
            var scale = 1.0 / (scale_x * scale_y);
            var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0;
            var a=0,b=0,dxn=0,alpha=0.0,beta=0.0,beta1=0.0;
            var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2);
            var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2);
            var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2);
            var buf = buf_node.f32;
            var sum = sum_node.f32;
            var xofs = xofs_node.f32;
            for (; dx < nw; dx++) {
                fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x;
                sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0;
                sx1 = Math.min(sx1, w - 1);
                sx2 = Math.min(sx2, w - 1);
                if(sx1 > fsx1) {
                    xofs_count++;
                    xofs[k++] = ((sx1 - 1)*ch)|0;
                    xofs[k++] = (dx * ch)|0;
                    xofs[k++] = (sx1 - fsx1) * scale;
                }
                for(sx = sx1; sx < sx2; sx++){
                    xofs_count++;
                    xofs[k++] = (sx * ch)|0;
                    xofs[k++] = (dx * ch)|0; 
                    xofs[k++] = scale;
                }
                if(fsx2 - sx2 > 1e-3) {
                    xofs_count++;
                    xofs[k++] = (sx2 * ch)|0;
                    xofs[k++] = (dx * ch)|0;
                    xofs[k++] = (fsx2 - sx2) * scale;
                }
            }
            for (dx = 0; dx < nw * ch; dx++) {
                buf[dx] = sum[dx] = 0;
            }
            dy = 0;
            for (sy = 0; sy < h; sy++) {
                a = w * sy;
                for (k = 0; k < xofs_count; k++) {
                    sx1 = xofs[k*3]|0;
                    dxn = xofs[k*3+1]|0;
                    alpha = xofs[k*3+2];
                    for (i = 0; i < ch; i++) {
                        buf[dxn + i] += src_d[a+sx1+i] * alpha;
                    }
                }
                if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) {
                    beta = Math.max(sy + 1 - (dy + 1) * scale_y, 0.0);
                    beta1 = 1.0 - beta;
                    b = nw * dy;
                    if (Math.abs(beta) < 1e-3) {
                        for (dx = 0; dx < nw * ch; dx++) {
                            dst_d[b+dx] = sum[dx] + buf[dx];
                            sum[dx] = buf[dx] = 0;
                        }
                    } else {
                        for (dx = 0; dx < nw * ch; dx++) {
                            dst_d[b+dx] = sum[dx] + buf[dx] * beta1;
                            sum[dx] = buf[dx] * beta;
                            buf[dx] = 0;
                        }
                    }
                    dy++;
                } else {
                    for(dx = 0; dx < nw * ch; dx++) {
                        sum[dx] += buf[dx]; 
                        buf[dx] = 0;
                    }
                }
            }
            jsfeat.cache.put_buffer(sum_node);
            jsfeat.cache.put_buffer(buf_node);
            jsfeat.cache.put_buffer(xofs_node);
        }
        var _convol_u8 = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) {
            var i=0,j=0,k=0,sp=0,dp=0,sum=0,sum1=0,sum2=0,sum3=0,f0=filter[0],fk=0;
            var w2=w<<1,w3=w*3,w4=w<<2;
            // hor pass
            for (; i < h; ++i) { 
                sum = src_d[sp];
                for (j = 0; j < half_kernel; ++j) {
                    buf[j] = sum;
                }
                for (j = 0; j <= w-2; j+=2) {
                    buf[j + half_kernel] = src_d[sp+j];
                    buf[j + half_kernel+1] = src_d[sp+j+1];
                }
                for (; j < w; ++j) {
                    buf[j + half_kernel] = src_d[sp+j];
                }
                sum = src_d[sp+w-1];
                for (j = w; j < half_kernel + w; ++j) {
                    buf[j + half_kernel] = sum;
                }
                for (j = 0; j <= w-4; j+=4) {
                    sum = buf[j] * f0, 
                    sum1 = buf[j+1] * f0,
                    sum2 = buf[j+2] * f0,
                    sum3 = buf[j+3] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        fk = filter[k];
                        sum += buf[k + j] * fk;
                        sum1 += buf[k + j+1] * fk;
                        sum2 += buf[k + j+2] * fk;
                        sum3 += buf[k + j+3] * fk;
                    }
                    dst_d[dp+j] = Math.min(sum >> 8, 255);
                    dst_d[dp+j+1] = Math.min(sum1 >> 8, 255);
                    dst_d[dp+j+2] = Math.min(sum2 >> 8, 255);
                    dst_d[dp+j+3] = Math.min(sum3 >> 8, 255);
                }
                for (; j < w; ++j) {
                    sum = buf[j] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        sum += buf[k + j] * filter[k];
                    }
                    dst_d[dp+j] = Math.min(sum >> 8, 255);
                }
                sp += w;
                dp += w;
            }
            // vert pass
            for (i = 0; i < w; ++i) {
                sum = dst_d[i];
                for (j = 0; j < half_kernel; ++j) {
                    buf[j] = sum;
                }
                k = i;
                for (j = 0; j <= h-2; j+=2, k+=w2) {
                    buf[j+half_kernel] = dst_d[k];
                    buf[j+half_kernel+1] = dst_d[k+w];
                }
                for (; j < h; ++j, k+=w) {
                    buf[j+half_kernel] = dst_d[k];
                }
                sum = dst_d[(h-1)*w + i];
                for (j = h; j < half_kernel + h; ++j) {
                    buf[j + half_kernel] = sum;
                }
                dp = i;
                for (j = 0; j <= h-4; j+=4, dp+=w4) { 
                    sum = buf[j] * f0, 
                    sum1 = buf[j+1] * f0,
                    sum2 = buf[j+2] * f0,
                    sum3 = buf[j+3] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        fk = filter[k];
                        sum += buf[k + j] * fk;
                        sum1 += buf[k + j+1] * fk;
                        sum2 += buf[k + j+2] * fk;
                        sum3 += buf[k + j+3] * fk;
                    }
                    dst_d[dp] = Math.min(sum >> 8, 255);
                    dst_d[dp+w] = Math.min(sum1 >> 8, 255);
                    dst_d[dp+w2] = Math.min(sum2 >> 8, 255);
                    dst_d[dp+w3] = Math.min(sum3 >> 8, 255);
                }
                for (; j < h; ++j, dp+=w) {
                    sum = buf[j] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        sum += buf[k + j] * filter[k];
                    }
                    dst_d[dp] = Math.min(sum >> 8, 255);
                }
            }
        }
        var _convol = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) {
            var i=0,j=0,k=0,sp=0,dp=0,sum=0.0,sum1=0.0,sum2=0.0,sum3=0.0,f0=filter[0],fk=0.0;
            var w2=w<<1,w3=w*3,w4=w<<2;
            // hor pass
            for (; i < h; ++i) { 
                sum = src_d[sp];
                for (j = 0; j < half_kernel; ++j) {
                    buf[j] = sum;
                }
                for (j = 0; j <= w-2; j+=2) {
                    buf[j + half_kernel] = src_d[sp+j];
                    buf[j + half_kernel+1] = src_d[sp+j+1];
                }
                for (; j < w; ++j) {
                    buf[j + half_kernel] = src_d[sp+j];
                }
                sum = src_d[sp+w-1];
                for (j = w; j < half_kernel + w; ++j) {
                    buf[j + half_kernel] = sum;
                }
                for (j = 0; j <= w-4; j+=4) {
                    sum = buf[j] * f0, 
                    sum1 = buf[j+1] * f0,
                    sum2 = buf[j+2] * f0,
                    sum3 = buf[j+3] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        fk = filter[k];
                        sum += buf[k + j] * fk;
                        sum1 += buf[k + j+1] * fk;
                        sum2 += buf[k + j+2] * fk;
                        sum3 += buf[k + j+3] * fk;
                    }
                    dst_d[dp+j] = sum;
                    dst_d[dp+j+1] = sum1;
                    dst_d[dp+j+2] = sum2;
                    dst_d[dp+j+3] = sum3;
                }
                for (; j < w; ++j) {
                    sum = buf[j] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        sum += buf[k + j] * filter[k];
                    }
                    dst_d[dp+j] = sum;
                }
                sp += w;
                dp += w;
            }
            // vert pass
            for (i = 0; i < w; ++i) {
                sum = dst_d[i];
                for (j = 0; j < half_kernel; ++j) {
                    buf[j] = sum;
                }
                k = i;
                for (j = 0; j <= h-2; j+=2, k+=w2) {
                    buf[j+half_kernel] = dst_d[k];
                    buf[j+half_kernel+1] = dst_d[k+w];
                }
                for (; j < h; ++j, k+=w) {
                    buf[j+half_kernel] = dst_d[k];
                }
                sum = dst_d[(h-1)*w + i];
                for (j = h; j < half_kernel + h; ++j) {
                    buf[j + half_kernel] = sum;
                }
                dp = i;
                for (j = 0; j <= h-4; j+=4, dp+=w4) { 
                    sum = buf[j] * f0, 
                    sum1 = buf[j+1] * f0,
                    sum2 = buf[j+2] * f0,
                    sum3 = buf[j+3] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        fk = filter[k];
                        sum += buf[k + j] * fk;
                        sum1 += buf[k + j+1] * fk;
                        sum2 += buf[k + j+2] * fk;
                        sum3 += buf[k + j+3] * fk;
                    }
                    dst_d[dp] = sum;
                    dst_d[dp+w] = sum1;
                    dst_d[dp+w2] = sum2;
                    dst_d[dp+w3] = sum3;
                }
                for (; j < h; ++j, dp+=w) {
                    sum = buf[j] * f0;
                    for (k = 1; k < kernel_size; ++k) {
                        sum += buf[k + j] * filter[k];
                    }
                    dst_d[dp] = sum;
                }
            }
        }
        return {
            // TODO: add support for RGB/BGR order
            // for raw arrays
            grayscale: function(src, w, h, dst, code) {
                // this is default image data representation in browser
                if (typeof code === "undefined") { code = jsfeat.COLOR_RGBA2GRAY; }
                var x=0, y=0, i=0, j=0, ir=0,jr=0;
                var coeff_r = 4899, coeff_g = 9617, coeff_b = 1868, cn = 4;
                if(code == jsfeat.COLOR_BGRA2GRAY || code == jsfeat.COLOR_BGR2GRAY) {
                    coeff_r = 1868;
                    coeff_b = 4899;
                }
                if(code == jsfeat.COLOR_RGB2GRAY || code == jsfeat.COLOR_BGR2GRAY) {
                    cn = 3;
                }
                var cn2 = cn<<1, cn3 = (cn*3)|0;
                dst.resize(w, h, 1);
                var dst_u8 = dst.data;
                for(y = 0; y < h; ++y, j+=w, i+=w*cn) {
                    for(x = 0, ir = i, jr = j; x <= w-4; x+=4, ir+=cn<<2, jr+=4) {
                        dst_u8[jr]     = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14;
                        dst_u8[jr + 1] = (src[ir+cn] * coeff_r + src[ir+cn+1] * coeff_g + src[ir+cn+2] * coeff_b + 8192) >> 14;
                        dst_u8[jr + 2] = (src[ir+cn2] * coeff_r + src[ir+cn2+1] * coeff_g + src[ir+cn2+2] * coeff_b + 8192) >> 14;
                        dst_u8[jr + 3] = (src[ir+cn3] * coeff_r + src[ir+cn3+1] * coeff_g + src[ir+cn3+2] * coeff_b + 8192) >> 14;
                    }
                    for (; x < w; ++x, ++jr, ir+=cn) {
                        dst_u8[jr] = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14;
                    }
                }
            },
            // derived from CCV library
            resample: function(src, dst, nw, nh) {
                var h=src.rows,w=src.cols;
                if (h > nh && w > nw) {
                    dst.resize(nw, nh, src.channel);
                    // using the fast alternative (fix point scale, 0x100 to avoid overflow)
                    if (src.type&jsfeat.U8_t && dst.type&jsfeat.U8_t && h * w / (nh * nw) < 0x100) {
                        _resample_u8(src, dst, nw, nh);
                    } else {
                        _resample(src, dst, nw, nh);
                    }
                }
            },
            box_blur_gray: function(src, dst, radius, options) {
                if (typeof options === "undefined") { options = 0; }
                var w=src.cols, h=src.rows, h2=h<<1, w2=w<<1;
                var i=0,x=0,y=0,end=0;
                var windowSize = ((radius << 1) + 1)|0;
                var radiusPlusOne = (radius + 1)|0, radiusPlus2 = (radiusPlusOne+1)|0;
                var scale = options&jsfeat.BOX_BLUR_NOSCALE ? 1 : (1.0 / (windowSize*windowSize));
                var tmp_buff = jsfeat.cache.get_buffer((w*h)<<2);
                var sum=0, dstIndex=0, srcIndex = 0, nextPixelIndex=0, previousPixelIndex=0;
                var data_i32 = tmp_buff.i32; // to prevent overflow
                var data_u8 = src.data;
                var hold=0;
                dst.resize(w, h, src.channel);
                // first pass
                // no need to scale 
                //data_u8 = src.data;
                //data_i32 = tmp;
                for (y = 0; y < h; ++y) {
                    dstIndex = y;
                    sum = radiusPlusOne * data_u8[srcIndex];
                    for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
                        sum += data_u8[i];
                    }
                    nextPixelIndex = (srcIndex + radiusPlusOne)|0;
                    previousPixelIndex = srcIndex;
                    hold = data_u8[previousPixelIndex];
                    for(x = 0; x < radius; ++x, dstIndex += h) {
                        data_i32[dstIndex] = sum;
                        sum += data_u8[nextPixelIndex]- hold;
                        nextPixelIndex ++;
                    }
                    for(; x < w-radiusPlus2; x+=2, dstIndex += h2) {
                        data_i32[dstIndex] = sum;
                        sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex];
                        data_i32[dstIndex+h] = sum;
                        sum += data_u8[nextPixelIndex+1]- data_u8[previousPixelIndex+1];
                        nextPixelIndex +=2;
                        previousPixelIndex +=2;
                    }
                    for(; x < w-radiusPlusOne; ++x, dstIndex += h) {
                        data_i32[dstIndex] = sum;
                        sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex];
                        nextPixelIndex ++;
                        previousPixelIndex ++;
                    }
                    
                    hold = data_u8[nextPixelIndex-1];
                    for(; x < w; ++x, dstIndex += h) {
                        data_i32[dstIndex] = sum;
                        sum += hold- data_u8[previousPixelIndex];
                        previousPixelIndex ++;
                    }
                    srcIndex += w;
                }
                //
                // second pass
                srcIndex = 0;
                //data_i32 = tmp; // this is a transpose
                data_u8 = dst.data;
                // dont scale result
                if(scale == 1) {
                    for (y = 0; y < w; ++y) {
                        dstIndex = y;
                        sum = radiusPlusOne * data_i32[srcIndex];
                        for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
                            sum += data_i32[i];
                        }
                        nextPixelIndex = srcIndex + radiusPlusOne;
                        previousPixelIndex = srcIndex;
                        hold = data_i32[previousPixelIndex];
                        for(x = 0; x < radius; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum;
                            sum += data_i32[nextPixelIndex]- hold;
                            nextPixelIndex ++;
                        }
                        for(; x < h-radiusPlus2; x+=2, dstIndex += w2) {
                            data_u8[dstIndex] = sum;
                            sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
                            data_u8[dstIndex+w] = sum;
                            sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1];
                            nextPixelIndex +=2;
                            previousPixelIndex +=2;
                        }
                        for(; x < h-radiusPlusOne; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum;
                            sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
                            nextPixelIndex ++;
                            previousPixelIndex ++;
                        }
                        hold = data_i32[nextPixelIndex-1];
                        for(; x < h; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum;
                            sum += hold- data_i32[previousPixelIndex];
                            previousPixelIndex ++;
                        }
                        srcIndex += h;
                    }
                } else {
                    for (y = 0; y < w; ++y) {
                        dstIndex = y;
                        sum = radiusPlusOne * data_i32[srcIndex];
                        for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
                            sum += data_i32[i];
                        }
                        nextPixelIndex = srcIndex + radiusPlusOne;
                        previousPixelIndex = srcIndex;
                        hold = data_i32[previousPixelIndex];
                        for(x = 0; x < radius; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum*scale;
                            sum += data_i32[nextPixelIndex]- hold;
                            nextPixelIndex ++;
                        }
                        for(; x < h-radiusPlus2; x+=2, dstIndex += w2) {
                            data_u8[dstIndex] = sum*scale;
                            sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
                            data_u8[dstIndex+w] = sum*scale;
                            sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1];
                            nextPixelIndex +=2;
                            previousPixelIndex +=2;
                        }
                        for(; x < h-radiusPlusOne; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum*scale;
                            sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
                            nextPixelIndex ++;
                            previousPixelIndex ++;
                        }
                        hold = data_i32[nextPixelIndex-1];
                        for(; x < h; ++x, dstIndex += w) {
                            data_u8[dstIndex] = sum*scale;
                            sum += hold- data_i32[previousPixelIndex];
                            previousPixelIndex ++;
                        }
                        srcIndex += h;
                    }
                }
                jsfeat.cache.put_buffer(tmp_buff);
            },
            gaussian_blur: function(src, dst, kernel_size, sigma) {
                if (typeof sigma === "undefined") { sigma = 0.0; }
                if (typeof kernel_size === "undefined") { kernel_size = 0; }
                kernel_size = kernel_size == 0 ? (Math.max(1, (4.0 * sigma + 1.0 - 1e-8)) * 2 + 1)|0 : kernel_size;
                var half_kernel = kernel_size >> 1;
                var w = src.cols, h = src.rows;
                var data_type = src.type, is_u8 = data_type&jsfeat.U8_t;
                dst.resize(w, h, src.channel);
                var src_d = src.data, dst_d = dst.data;
                var buf,filter,buf_sz=(kernel_size + Math.max(h, w))|0;
                var buf_node = jsfeat.cache.get_buffer(buf_sz<<2);
                var filt_node = jsfeat.cache.get_buffer(kernel_size<<2);
                if(is_u8) {
                    buf = buf_node.i32;
                    filter = filt_node.i32;
                } else if(data_type&jsfeat.S32_t) {
                    buf = buf_node.i32;
                    filter = filt_node.f32;
                } else {
                    buf = buf_node.f32;
                    filter = filt_node.f32;
                }
                jsfeat.math.get_gaussian_kernel(kernel_size, sigma, filter, data_type);
                if(is_u8) {
                    _convol_u8(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel);
                } else {
                    _convol(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel);
                }
                jsfeat.cache.put_buffer(buf_node);
                jsfeat.cache.put_buffer(filt_node);
            },
            hough_transform: function( img, rho_res, theta_res, threshold ) {
                var image = img.data;
                var width = img.cols;
                var height = img.rows;
                var step = width;
                min_theta = 0.0;
                max_theta = Math.PI;
                numangle = Math.round((max_theta - min_theta) / theta_res);
                numrho = Math.round(((width + height) * 2 + 1) / rho_res);
                irho = 1.0 / rho_res;
                var accum = new Int32Array((numangle+2) * (numrho+2)); //typed arrays are initialized to 0
                var tabSin = new Float32Array(numangle);
                var tabCos = new Float32Array(numangle);
                var n=0;
                var ang = min_theta;
                for(; n < numangle; n++ ) {
                    tabSin[n] = Math.sin(ang) * irho;
                    tabCos[n] = Math.cos(ang) * irho;
                    ang += theta_res
                }
                // stage 1. fill accumulator
                for( var i = 0; i < height; i++ ) {
                    for( var j = 0; j < width; j++ ) {
                        if( image[i * step + j] != 0 ) {
                            //console.log(r, (n+1) * (numrho+2) + r+1, tabCos[n], tabSin[n]);
                            for(var n = 0; n < numangle; n++ ) {
                                var r = Math.round( j * tabCos[n] + i * tabSin[n] );
                                r += (numrho - 1) / 2;
                                accum[(n+1) * (numrho+2) + r+1] += 1;
                            }
                        }
                    }
                }
                // stage 2. find local maximums
                //TODO: Consider making a vector class that uses typed arrays
                _sort_buf = new Array();
                for(var r = 0; r < numrho; r++ ) {
                    for(var n = 0; n < numangle; n++ ) {
                        var base = (n+1) * (numrho+2) + r+1;
                        if( accum[base] > threshold &&
                            accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] &&
                            accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) {
                            _sort_buf.push(base);
                        }
                    }
                }
                // stage 3. sort the detected lines by accumulator value
                _sort_buf.sort(function(l1, l2) {
                    return accum[l1] > accum[l2] || (accum[l1] == accum[l2] && l1 < l2);
                });
                // stage 4. store the first min(total,linesMax) lines to the output buffer
                linesMax = Math.min(numangle*numrho, _sort_buf.length);
                scale = 1.0 / (numrho+2);
                lines = new Array();
                for( var i = 0; i < linesMax; i++ ) {
                    var idx = _sort_buf[i];
                    var n = Math.floor(idx*scale) - 1;
                    var r = idx - (n+1)*(numrho+2) - 1;
                    var lrho = (r - (numrho - 1)*0.5) * rho_res;
                    var langle = n * theta_res;
                    lines.push([lrho, langle]);
                }
                return lines;
            },
            // assume we always need it for u8 image
            pyrdown: function(src, dst, sx, sy) {
                // this is needed for bbf
                if (typeof sx === "undefined") { sx = 0; }
                if (typeof sy === "undefined") { sy = 0; }
                var w = src.cols, h = src.rows;
                var w2 = w >> 1, h2 = h >> 1;
                var _w2 = w2 - (sx << 1), _h2 = h2 - (sy << 1);
                var x=0,y=0,sptr=sx+sy*w,sline=0,dptr=0,dline=0;
                dst.resize(w2, h2, src.channel);
                var src_d = src.data, dst_d = dst.data;
                for(y = 0; y < _h2; ++y) {
                    sline = sptr;
                    dline = dptr;
                    for(x = 0; x <= _w2-2; x+=2, dline+=2, sline += 4) {
                        dst_d[dline] = (src_d[sline] + src_d[sline+1] +
                                            src_d[sline+w] + src_d[sline+w+1] + 2) >> 2;
                        dst_d[dline+1] = (src_d[sline+2] + src_d[sline+3] +
                                            src_d[sline+w+2] + src_d[sline+w+3] + 2) >> 2;
                    }
                    for(; x < _w2; ++x, ++dline, sline += 2) {
                        dst_d[dline] = (src_d[sline] + src_d[sline+1] +
                                            src_d[sline+w] + src_d[sline+w+1] + 2) >> 2;
                    }
                    sptr += w << 1;
                    dptr += w2;
                }
            },
            // dst: [gx,gy,...]
            scharr_derivatives: function(src, dst) {
                var w = src.cols, h = src.rows;
                var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f;
                var srow0=0,srow1=0,srow2=0,drow=0;
                var trow0,trow1;
                dst.resize(w, h, 2); // 2 channel output gx, gy
                var img = src.data, gxgy=dst.data;
                var buf0_node = jsfeat.cache.get_buffer((w+2)<<2);
                var buf1_node = jsfeat.cache.get_buffer((w+2)<<2);
                if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) {
                    trow0 = buf0_node.i32;
                    trow1 = buf1_node.i32;
                } else {
                    trow0 = buf0_node.f32;
                    trow1 = buf1_node.f32;
                }
                for(; y < h; ++y, srow1+=w) {
                    srow0 = ((y > 0 ? y-1 : 1)*w)|0;
                    srow2 = ((y < h-1 ? y+1 : h-2)*w)|0;
                    drow = (y*dstep)|0;
                    // do vertical convolution
                    for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) {
                        a = img[srow0+x], b = img[srow2+x];
                        trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 );
                        trow1[x1] = ( b - a );
                        //
                        a = img[srow0+x+1], b = img[srow2+x+1];
                        trow0[x1+1] = ( (a + b)*3 + (img[srow1+x+1])*10 );
                        trow1[x1+1] = ( b - a );
                    }
                    for(; x < w; ++x, ++x1) {
                        a = img[srow0+x], b = img[srow2+x];
                        trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 );
                        trow1[x1] = ( b - a );
                    }
                    // make border
                    x = (w + 1)|0;
                    trow0[0] = trow0[1]; trow0[x] = trow0[w];
                    trow1[0] = trow1[1]; trow1[x] = trow1[w];
                    // do horizontal convolution, interleave the results and store them
                    for(x = 0; x <= w-4; x+=4) {
                        a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4],
                        e = trow0[x+2], f = trow0[x+3];
                        gxgy[drow++] = ( e - trow0[x] );
                        gxgy[drow++] = ( (a + trow1[x])*3 + b*10 );
                        gxgy[drow++] = ( f - trow0[x+1] );
                        gxgy[drow++] = ( (c + b)*3 + a*10 );
                        gxgy[drow++] = ( (trow0[x+4] - e) );
                        gxgy[drow++] = ( ((d + a)*3 + c*10) );
                        gxgy[drow++] = ( (trow0[x+5] - f) );
                        gxgy[drow++] = ( ((trow1[x+5] + c)*3 + d*10) );
                    }
                    for(; x < w; ++x) {
                        gxgy[drow++] = ( (trow0[x+2] - trow0[x]) );
                        gxgy[drow++] = ( ((trow1[x+2] + trow1[x])*3 + trow1[x+1]*10) );
                    }
                }
                jsfeat.cache.put_buffer(buf0_node);
                jsfeat.cache.put_buffer(buf1_node);
            },
            // compute gradient using Sobel kernel [1 2 1] * [-1 0 1]^T
            // dst: [gx,gy,...]
            sobel_derivatives: function(src, dst) {
                var w = src.cols, h = src.rows;
                var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f;
                var srow0=0,srow1=0,srow2=0,drow=0;
                var trow0,trow1;
                dst.resize(w, h, 2); // 2 channel output gx, gy
                var img = src.data, gxgy=dst.data;
                var buf0_node = jsfeat.cache.get_buffer((w+2)<<2);
                var buf1_node = jsfeat.cache.get_buffer((w+2)<<2);
                if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) {
                    trow0 = buf0_node.i32;
                    trow1 = buf1_node.i32;
                } else {
                    trow0 = buf0_node.f32;
                    trow1 = buf1_node.f32;
                }
                for(; y < h; ++y, srow1+=w) {
                    srow0 = ((y > 0 ? y-1 : 1)*w)|0;
                    srow2 = ((y < h-1 ? y+1 : h-2)*w)|0;
                    drow = (y*dstep)|0;
                    // do vertical convolution
                    for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) {
                        a = img[srow0+x], b = img[srow2+x];
                        trow0[x1] = ( (a + b) + (img[srow1+x]*2) );
                        trow1[x1] = ( b - a );
                        //
                        a = img[srow0+x+1], b = img[srow2+x+1];
                        trow0[x1+1] = ( (a + b) + (img[srow1+x+1]*2) );
                        trow1[x1+1] = ( b - a );
                    }
                    for(; x < w; ++x, ++x1) {
                        a = img[srow0+x], b = img[srow2+x];
                        trow0[x1] = ( (a + b) + (img[srow1+x]*2) );
                        trow1[x1] = ( b - a );
                    }
                    // make border
                    x = (w + 1)|0;
                    trow0[0] = trow0[1]; trow0[x] = trow0[w];
                    trow1[0] = trow1[1]; trow1[x] = trow1[w];
                    // do horizontal convolution, interleave the results and store them
                    for(x = 0; x <= w-4; x+=4) {
                        a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4],
                        e = trow0[x+2], f = trow0[x+3];
                        gxgy[drow++] = ( e - trow0[x] );
                        gxgy[drow++] = ( a + trow1[x] + b*2 );
                        gxgy[drow++] = ( f - trow0[x+1] );
                        gxgy[drow++] = ( c + b + a*2 );
                        gxgy[drow++] = ( trow0[x+4] - e );
                        gxgy[drow++] = ( d + a + c*2 );
                        gxgy[drow++] = ( trow0[x+5] - f );
                        gxgy[drow++] = ( trow1[x+5] + c + d*2 );
                    }
                    for(; x < w; ++x) {
                        gxgy[drow++] = ( trow0[x+2] - trow0[x] );
                        gxgy[drow++] = ( trow1[x+2] + trow1[x] + trow1[x+1]*2 );
                    }
                }
                jsfeat.cache.put_buffer(buf0_node);
                jsfeat.cache.put_buffer(buf1_node);
            },
            // please note: 
            // dst_(type) size should be cols = src.cols+1, rows = src.rows+1
            compute_integral_image: function(src, dst_sum, dst_sqsum, dst_tilted) {
                var w0=src.cols|0,h0=src.rows|0,src_d=src.data;
                var w1=(w0+1)|0;
                var s=0,s2=0,p=0,pup=0,i=0,j=0,v=0,k=0;
                if(dst_sum && dst_sqsum) {
                    // fill first row with zeros
                    for(; i < w1; ++i) {
                        dst_sum[i] = 0, dst_sqsum[i] = 0;
                    }
                    p = (w1+1)|0, pup = 1;
                    for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
                        s = s2 = 0;
                        for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
                            v = src_d[k];
                            s += v, s2 += v*v;
                            dst_sum[p] = dst_sum[pup] + s;
                            dst_sqsum[p] = dst_sqsum[pup] + s2;
                            v = src_d[k+1];
                            s += v, s2 += v*v;
                            dst_sum[p+1] = dst_sum[pup+1] + s;
                            dst_sqsum[p+1] = dst_sqsum[pup+1] + s2;
                        }
                        for(; j < w0; ++j, ++k, ++p, ++pup) {
                            v = src_d[k];
                            s += v, s2 += v*v;
                            dst_sum[p] = dst_sum[pup] + s;
                            dst_sqsum[p] = dst_sqsum[pup] + s2;
                        }
                    }
                } else if(dst_sum) {
                    // fill first row with zeros
                    for(; i < w1; ++i) {
                        dst_sum[i] = 0;
                    }
                    p = (w1+1)|0, pup = 1;
                    for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
                        s = 0;
                        for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
                            s += src_d[k];
                            dst_sum[p] = dst_sum[pup] + s;
                            s += src_d[k+1];
                            dst_sum[p+1] = dst_sum[pup+1] + s;
                        }
                        for(; j < w0; ++j, ++k, ++p, ++pup) {
                            s += src_d[k];
                            dst_sum[p] = dst_sum[pup] + s;
                        }
                    }
                } else if(dst_sqsum) {
                    // fill first row with zeros
                    for(; i < w1; ++i) {
                        dst_sqsum[i] = 0;
                    }
                    p = (w1+1)|0, pup = 1;
                    for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
                        s2 = 0;
                        for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
                            v = src_d[k];
                            s2 += v*v;
                            dst_sqsum[p] = dst_sqsum[pup] + s2;
                            v = src_d[k+1];
                            s2 += v*v;
                            dst_sqsum[p+1] = dst_sqsum[pup+1] + s2;
                        }
                        for(; j < w0; ++j, ++k, ++p, ++pup) {
                            v = src_d[k];
                            s2 += v*v;
                            dst_sqsum[p] = dst_sqsum[pup] + s2;
                        }
                    }
                }
                if(dst_tilted) {
                    // fill first row with zeros
                    for(i = 0; i < w1; ++i) {
                        dst_tilted[i] = 0;
                    }
                    // diagonal
                    p = (w1+1)|0, pup = 0;
                    for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
                        for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
                            dst_tilted[p] = src_d[k] + dst_tilted[pup];
                            dst_tilted[p+1] = src_d[k+1] + dst_tilted[pup+1];
                        }
                        for(; j < w0; ++j, ++k, ++p, ++pup) {
                            dst_tilted[p] = src_d[k] + dst_tilted[pup];
                        }
                    }
                    // diagonal
                    p = (w1+w0)|0, pup = w0;
                    for(i = 0; i < h0; ++i, p+=w1, pup+=w1) {
                        dst_tilted[p] += dst_tilted[pup];
                    }
                    for(j = w0-1; j > 0; --j) {
                        p = j+h0*w1, pup=p-w1;
                        for(i = h0; i > 0; --i, p-=w1, pup-=w1) {
                            dst_tilted[p] += dst_tilted[pup] + dst_tilted[pup+1];
                        }
                    }
                }
            },
            equalize_histogram: function(src, dst) {
                var w=src.cols,h=src.rows,src_d=src.data;
                dst.resize(w, h, src.channel);
                var dst_d=dst.data,size=w*h;
                var i=0,prev=0,hist0,norm;
                var hist0_node = jsfeat.cache.get_buffer(256<<2);
                hist0 = hist0_node.i32;
                for(; i < 256; ++i) hist0[i] = 0;
                for (i = 0; i < size; ++i) {
                    ++hist0[src_d[i]];
                }
                prev = hist0[0];
                for (i = 1; i < 256; ++i) {
                    prev = hist0[i] += prev;
                }
                norm = 255 / size;
                for (i = 0; i < size; ++i) {
                    dst_d[i] = (hist0[src_d[i]] * norm + 0.5)|0;
                }
                jsfeat.cache.put_buffer(hist0_node);
            },
            canny: function(src, dst, low_thresh, high_thresh) {
                var w=src.cols,h=src.rows,src_d=src.data;
                dst.resize(w, h, src.channel);
                
                var dst_d=dst.data;
                var i=0,j=0,grad=0,w2=w<<1,_grad=0,suppress=0,f=0,x=0,y=0,s=0;
                var tg22x=0,tg67x=0;
                // cache buffers
                var dxdy_node = jsfeat.cache.get_buffer((h * w2)<<2);
                var buf_node = jsfeat.cache.get_buffer((3 * (w + 2))<<2);
                var map_node = jsfeat.cache.get_buffer(((h+2) * (w + 2))<<2);
                var stack_node = jsfeat.cache.get_buffer((h * w)<<2);
                
                var buf = buf_node.i32;
                var map = map_node.i32;
                var stack = stack_node.i32;
                var dxdy = dxdy_node.i32;
                var dxdy_m = new jsfeat.matrix_t(w, h, jsfeat.S32C2_t, dxdy_node.data);
                var row0=1,row1=(w+2+1)|0,row2=(2*(w+2)+1)|0,map_w=(w+2)|0,map_i=(map_w+1)|0,stack_i=0;
                this.sobel_derivatives(src, dxdy_m);
                if(low_thresh > high_thresh) {
                    i = low_thresh;
                    low_thresh = high_thresh;
                    high_thresh = i;
                }
                i = (3 * (w + 2))|0;
                while(--i>=0) {
                    buf[i] = 0;
                }
                i = ((h+2) * (w + 2))|0;
                while(--i>=0) {
                    map[i] = 0;
                }
                for (; j < w; ++j, grad+=2) {
                    //buf[row1+j] = Math.abs(dxdy[grad]) + Math.abs(dxdy[grad+1]);
                    x = dxdy[grad], y = dxdy[grad+1];
                    //buf[row1+j] = x*x + y*y;
                    buf[row1+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31));
                }
                for(i=1; i <= h; ++i, grad+=w2) {
                    if(i == h) {
                        j = row2+w;
                        while(--j>=row2) {
                            buf[j] = 0;
                        }
                    } else {
                        for (j = 0; j < w; j++) {
                            //buf[row2+j] =  Math.abs(dxdy[grad+(j<<1)]) + Math.abs(dxdy[grad+(j<<1)+1]);
                            x = dxdy[grad+(j<<1)], y = dxdy[grad+(j<<1)+1];
                            //buf[row2+j] = x*x + y*y;
                            buf[row2+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31));
                        }
                    }
                    _grad = (grad - w2)|0;
                    map[map_i-1] = 0;
                    suppress = 0;
                    for(j = 0; j < w; ++j, _grad+=2) {
                        f = buf[row1+j];
                        if (f > low_thresh) {
                            x = dxdy[_grad];
                            y = dxdy[_grad+1];
                            s = x ^ y;
                            // seems ot be faster than Math.abs
                            x = ((x ^ (x >> 31)) - (x >> 31))|0;
                            y = ((y ^ (y >> 31)) - (y >> 31))|0;
                            //x * tan(22.5) x * tan(67.5) == 2 * x + x * tan(22.5)
                            tg22x = x * 13573;
                            tg67x = tg22x + ((x + x) << 15);
                            y <<= 15;
                            if (y < tg22x) {
                                if (f > buf[row1+j-1] && f >= buf[row1+j+1]) {
                                    if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
                                        map[map_i+j] = 2;
                                        suppress = 1;
                                        stack[stack_i++] = map_i + j;
                                    } else {
                                        map[map_i+j] = 1;
                                    }
                                    continue;
                                }
                            } else if (y > tg67x) {
                                if (f > buf[row0+j] && f >= buf[row2+j]) {
                                    if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
                                        map[map_i+j] = 2;
                                        suppress = 1;
                                        stack[stack_i++] = map_i + j;
                                    } else {
                                        map[map_i+j] = 1;
                                    }
                                    continue;
                                }
                            } else {
                                s = s < 0 ? -1 : 1;
                                if (f > buf[row0+j-s] && f > buf[row2+j+s]) {
                                    if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
                                        map[map_i+j] = 2;
                                        suppress = 1;
                                        stack[stack_i++] = map_i + j;
                                    } else {
                                        map[map_i+j] = 1;
                                    }
                                    continue;
                                }
                            }
                        }
                        map[map_i+j] = 0;
                        suppress = 0;
                    }
                    map[map_i+w] = 0;
                    map_i += map_w;
                    j = row0;
                    row0 = row1;
                    row1 = row2;
                    row2 = j;
                }
                j = map_i - map_w - 1;
                for(i = 0; i < map_w; ++i, ++j) {
                    map[j] = 0;
                }
                // path following
                while(stack_i > 0) {
                    map_i = stack[--stack_i];
                    map_i -= map_w+1;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += 1;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += 1;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += map_w;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i -= 2;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += map_w;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += 1;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                    map_i += 1;
                    if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
                }
                map_i = map_w + 1;
                row0 = 0;
                for(i = 0; i < h; ++i, map_i+=map_w) {
                    for(j = 0; j < w; ++j) {
                        dst_d[row0++] = (map[map_i+j] == 2) * 0xff;
                    }
                }
                // free buffers
                jsfeat.cache.put_buffer(dxdy_node);
                jsfeat.cache.put_buffer(buf_node);
                jsfeat.cache.put_buffer(map_node);
                jsfeat.cache.put_buffer(stack_node);
            },
            // transform is 3x3 matrix_t
            warp_perspective: function(src, dst, transform, fill_value) {
                if (typeof fill_value === "undefined") { fill_value = 0; }
                var src_width=src.cols|0, src_height=src.rows|0, dst_width=dst.cols|0, dst_height=dst.rows|0;
                var src_d=src.data, dst_d=dst.data;
                var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,xs0=0.0,ys0=0.0,ws=0.0,sc=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0;
                var td=transform.data;
                var m00=td[0],m01=td[1],m02=td[2],
                    m10=td[3],m11=td[4],m12=td[5],
                    m20=td[6],m21=td[7],m22=td[8];
                for(var dptr = 0; y < dst_height; ++y) {
                    xs0 = m01 * y + m02,
                    ys0 = m11 * y + m12,
                    ws  = m21 * y + m22;
                    for(x = 0; x < dst_width; ++x, ++dptr, xs0+=m00, ys0+=m10, ws+=m20) {
                        sc = 1.0 / ws;
                        xs = xs0 * sc, ys = ys0 * sc;
                        ixs = xs | 0, iys = ys | 0;
                        if(xs > 0 && ys > 0 && ixs < (src_width - 1) && iys < (src_height - 1)) {
                            a = Math.max(xs - ixs, 0.0);
                            b = Math.max(ys - iys, 0.0);
                            off = (src_width*iys + ixs)|0;
                            p0 = src_d[off] +  a * (src_d[off+1] - src_d[off]);
                            p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]);
                            dst_d[dptr] = p0 + b * (p1 - p0);
                        }
                        else dst_d[dptr] = fill_value;
                    }
                }
            },
            // transform is 3x3 or 2x3 matrix_t only first 6 values referenced
            warp_affine: function(src, dst, transform, fill_value) {
                if (typeof fill_value === "undefined") { fill_value = 0; }
                var src_width=src.cols, src_height=src.rows, dst_width=dst.cols, dst_height=dst.rows;
                var src_d=src.data, dst_d=dst.data;
                var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0;
                var td=transform.data;
                var m00=td[0],m01=td[1],m02=td[2],
                    m10=td[3],m11=td[4],m12=td[5];
                for(var dptr = 0; y < dst_height; ++y) {
                    xs = m01 * y + m02;
                    ys = m11 * y + m12;
                    for(x = 0; x < dst_width; ++x, ++dptr, xs+=m00, ys+=m10) {
                        ixs = xs | 0; iys = ys | 0;
                        if(ixs >= 0 && iys >= 0 && ixs < (src_width - 1) && iys < (src_height - 1)) {
                            a = xs - ixs;
                            b = ys - iys;
                            off = src_width*iys + ixs;
                            p0 = src_d[off] +  a * (src_d[off+1] - src_d[off]);
                            p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]);
                            dst_d[dptr] = p0 + b * (p1 - p0);
                        }
                        else dst_d[dptr] = fill_value;
                    }
                }
            },
            
            // Basic RGB Skin detection filter
            // from http://popscan.blogspot.fr/2012/08/skin-detection-in-digital-images.html
            skindetector: function(src,dst) {
                var r,g,b,j;
                var i = src.width*src.height;
                while(i--){
                    j = i*4;
                    r = src.data[j];
                    g = src.data[j+1];
                    b = src.data[j+2];
                    if((r>95)&&(g>40)&&(b>20)
                     &&(r>g)&&(r>b)
                     &&(r-Math.min(g,b)>15)
                     &&(Math.abs(r-g)>15)){
                         dst[i] = 255;
                    } else {
                        dst[i] = 0;
                    }
                }                
            }
        };
    })();
    global.imgproc = imgproc;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
 */
/*
The references are:
 * Machine learning for high-speed corner detection,
   E. Rosten and T. Drummond, ECCV 2006
 * Faster and better: A machine learning approach to corner detection
   E. Rosten, R. Porter and T. Drummond, PAMI, 2009  
*/
(function(global) {
    "use strict";
    //
    var fast_corners = (function() {
        var offsets16 = new Int32Array([0, 3, 1, 3, 2, 2, 3, 1, 3, 0, 3, -1, 2, -2, 1, -3, 0, -3, -1, -3, -2, -2, -3, -1, -3, 0, -3, 1, -2, 2, -1, 3]);
        var threshold_tab = new Uint8Array(512);
        var pixel_off = new Int32Array(25);
        var score_diff = new Int32Array(25);
        // private functions
        var _cmp_offsets = function(pixel, step, pattern_size) {
            var k = 0;
            var offsets = offsets16;
            for( ; k < pattern_size; ++k ) {
                pixel[k] = offsets[k<<1] + offsets[(k<<1)+1] * step;
            }
            for( ; k < 25; ++k ) {
                pixel[k] = pixel[k - pattern_size];
            }
        },
        _cmp_score_16 = function(src, off, pixel, d, threshold) {
            var N = 25, k = 0, v = src[off];
            var a0 = threshold,a=0,b0=0,b=0;
            for( ; k < N; ++k ) {
                d[k] = v - src[off+pixel[k]];
            }
            for( k = 0; k < 16; k += 2 ) {
                a = Math.min(d[k+1], d[k+2]);
                a = Math.min(a, d[k+3]);
                if( a <= a0 ) continue;
                a = Math.min(a, d[k+4]);
                a = Math.min(a, d[k+5]);
                a = Math.min(a, d[k+6]);
                a = Math.min(a, d[k+7]);
                a = Math.min(a, d[k+8]);
                a0 = Math.max(a0, Math.min(a, d[k]));
                a0 = Math.max(a0, Math.min(a, d[k+9]));
            }
            b0 = -a0;
            for( k = 0; k < 16; k += 2 ) {
                b = Math.max(d[k+1], d[k+2]);
                b = Math.max(b, d[k+3]);
                b = Math.max(b, d[k+4]);
                b = Math.max(b, d[k+5]);
                if( b >= b0 ) continue;
                b = Math.max(b, d[k+6]);
                b = Math.max(b, d[k+7]);
                b = Math.max(b, d[k+8]);
                b0 = Math.min(b0, Math.max(b, d[k]));
                b0 = Math.min(b0, Math.max(b, d[k+9]));
            }
            return -b0-1;
        };
        var _threshold = 20;
        return {
            set_threshold: function(threshold) {
                _threshold = Math.min(Math.max(threshold, 0), 255);
                for (var i = -255; i <= 255; ++i) {
                    threshold_tab[(i + 255)] = (i < -_threshold ? 1 : (i > _threshold ? 2 : 0));
                }
                return _threshold;
            },
            
            detect: function(src, corners, border) {
                if (typeof border === "undefined") { border = 3; }
                var K = 8, N = 25;
                var img = src.data, w = src.cols, h = src.rows;
                var i=0, j=0, k=0, vt=0, x=0, m3=0;
                var buf_node = jsfeat.cache.get_buffer(3 * w);
                var cpbuf_node = jsfeat.cache.get_buffer(((w+1)*3)<<2);
                var buf = buf_node.u8;
                var cpbuf = cpbuf_node.i32;
                var pixel = pixel_off;
                var sd = score_diff;
                var sy = Math.max(3, border);
                var ey = Math.min((h-2), (h-border));
                var sx = Math.max(3, border);
                var ex = Math.min((w - 3), (w - border));
                var _count = 0, corners_cnt = 0, pt;
                var score_func = _cmp_score_16;
                var thresh_tab = threshold_tab;
                var threshold = _threshold;
                var v=0,tab=0,d=0,ncorners=0,cornerpos=0,curr=0,ptr=0,prev=0,pprev=0;
                var jp1=0,jm1=0,score=0;
                _cmp_offsets(pixel, w, 16);
                // local vars are faster?
                var pixel0 = pixel[0];
                var pixel1 = pixel[1];
                var pixel2 = pixel[2];
                var pixel3 = pixel[3];
                var pixel4 = pixel[4];
                var pixel5 = pixel[5];
                var pixel6 = pixel[6];
                var pixel7 = pixel[7];
                var pixel8 = pixel[8];
                var pixel9 = pixel[9];
                var pixel10 = pixel[10];
                var pixel11 = pixel[11];
                var pixel12 = pixel[12];
                var pixel13 = pixel[13];
                var pixel14 = pixel[14];
                var pixel15 = pixel[15];
                for(i = 0; i < w*3; ++i) {
                    buf[i] = 0;
                }
                for(i = sy; i < ey; ++i) {
                    ptr = ((i * w) + sx)|0;
                    m3 = (i - 3)%3;
                    curr = (m3*w)|0;
                    cornerpos = (m3*(w+1))|0;
                    for (j = 0; j < w; ++j) buf[curr+j] = 0;
                    ncorners = 0;
                    
                    if( i < (ey - 1) ) {
                        j = sx;
                        
                        for( ; j < ex; ++j, ++ptr ) {
                            v = img[ptr];
                            tab = ( - v + 255 );
                            d = ( thresh_tab[tab+img[ptr+pixel0]] | thresh_tab[tab+img[ptr+pixel8]] );
                            
                            if( d == 0 ) {
                                continue;
                            }
                            
                            d &= ( thresh_tab[tab+img[ptr+pixel2]] | thresh_tab[tab+img[ptr+pixel10]] );
                            d &= ( thresh_tab[tab+img[ptr+pixel4]] | thresh_tab[tab+img[ptr+pixel12]] );
                            d &= ( thresh_tab[tab+img[ptr+pixel6]] | thresh_tab[tab+img[ptr+pixel14]] );
                            
                            if( d == 0 ) {
                                continue;
                            }
                            
                            d &= ( thresh_tab[tab+img[ptr+pixel1]] | thresh_tab[tab+img[ptr+pixel9]] );
                            d &= ( thresh_tab[tab+img[ptr+pixel3]] | thresh_tab[tab+img[ptr+pixel11]] );
                            d &= ( thresh_tab[tab+img[ptr+pixel5]] | thresh_tab[tab+img[ptr+pixel13]] );
                            d &= ( thresh_tab[tab+img[ptr+pixel7]] | thresh_tab[tab+img[ptr+pixel15]] );
                            
                            if( d & 1 ) {
                                vt = (v - threshold);
                                _count = 0;
                                
                                for( k = 0; k < N; ++k ) {
                                    x = img[(ptr+pixel[k])];
                                    if(x < vt) {
                                        ++_count;
                                        if( _count > K ) {
                                            ++ncorners;
                                            cpbuf[cornerpos+ncorners] = j;
                                            buf[curr+j] = score_func(img, ptr, pixel, sd, threshold);
                                            break;
                                        }
                                    }
                                    else {
                                        _count = 0;
                                    }
                                }
                            }
                            
                            if( d & 2 ) {
                                vt = (v + threshold);
                                _count = 0;
                                
                                for( k = 0; k < N; ++k ) {
                                    x = img[(ptr+pixel[k])];
                                    if(x > vt) {
                                        ++_count;
                                        if( _count > K ) {
                                            ++ncorners;
                                            cpbuf[cornerpos+ncorners] = j;
                                            buf[curr+j] = score_func(img, ptr, pixel, sd, threshold);
                                            break;
                                        }
                                    }
                                    else {
                                        _count = 0;
                                    }
                                }
                            }
                        }
                    }
                    
                    cpbuf[cornerpos+w] = ncorners;
            
                    if ( i == sy ) {
                        continue;
                    }
                    
                    m3 = (i - 4 + 3)%3;
                    prev = (m3*w)|0;
                    cornerpos = (m3*(w+1))|0;
                    m3 = (i - 5 + 3)%3;
                    pprev = (m3*w)|0;
                    ncorners = cpbuf[cornerpos+w];
                    
                    for( k = 0; k < ncorners; ++k ) {
                        j = cpbuf[cornerpos+k];
                        jp1 = (j+1)|0;
                        jm1 = (j-1)|0;
                        score = buf[prev+j];
                        if( (score > buf[prev+jp1] && score > buf[prev+jm1] &&
                            score > buf[pprev+jm1] && score > buf[pprev+j] && score > buf[pprev+jp1] &&
                            score > buf[curr+jm1] && score > buf[curr+j] && score > buf[curr+jp1]) ) {
                            // save corner
                            pt = corners[corners_cnt];
                            pt.x = j, pt.y = (i-1), pt.score = score;
                            corners_cnt++;
                        }
                    }
                } // y loop
                jsfeat.cache.put_buffer(buf_node);
                jsfeat.cache.put_buffer(cpbuf_node);
                return corners_cnt;
            }
        };
    })();
    global.fast_corners = fast_corners;
    fast_corners.set_threshold(20); // set default
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * Copyright 2007 Computer Vision Lab,
 * Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
 * @author Vincent Lepetit (http://cvlab.epfl.ch/~lepetit)
 */
(function(global) {
    "use strict";
    //
    var yape06 = (function() {
        
        var compute_laplacian = function(src, dst, w, h, Dxx, Dyy, sx,sy, ex,ey) {
            var y=0,x=0,yrow=(sy*w+sx)|0,row=yrow;
            for(y = sy; y < ey; ++y, yrow+=w, row = yrow) {
                for(x = sx; x < ex; ++x, ++row) {
                    dst[row] = -4 * src[row] + src[row+Dxx] + src[row-Dxx] + src[row+Dyy] + src[row-Dyy];
                }
            }
        }
        var hessian_min_eigen_value = function(src, off, tr, Dxx, Dyy, Dxy, Dyx) {
            var Ixx = -2 * src[off] + src[off + Dxx] + src[off - Dxx];
            var Iyy = -2 * src[off] + src[off + Dyy] + src[off - Dyy];
            var Ixy = src[off + Dxy] + src[off - Dxy] - src[off + Dyx] - src[off - Dyx];
            var sqrt_delta = ( Math.sqrt(((Ixx - Iyy) * (Ixx - Iyy) + 4 * Ixy * Ixy) ) )|0;
            return Math.min(Math.abs(tr - sqrt_delta), Math.abs(-(tr + sqrt_delta)));
        }
        return {
            laplacian_threshold: 30,
            min_eigen_value_threshold: 25,
            detect: function(src, points, border) {
                if (typeof border === "undefined") { border = 5; }
                var x=0,y=0;
                var w=src.cols, h=src.rows, srd_d=src.data;
                var Dxx = 5, Dyy = (5 * w)|0;
                var Dxy = (3 + 3 * w)|0, Dyx = (3 - 3 * w)|0;
                var lap_buf = jsfeat.cache.get_buffer((w*h)<<2);
                var laplacian = lap_buf.i32;
                var lv=0, row=0,rowx=0,min_eigen_value=0,pt;
                var number_of_points = 0;
                var lap_thresh = this.laplacian_threshold;
                var eigen_thresh = this.min_eigen_value_threshold;
                var sx = Math.max(5, border)|0;
                var sy = Math.max(3, border)|0;
                var ex = Math.min(w-5, w-border)|0;
                var ey = Math.min(h-3, h-border)|0;
                x = w*h;
                while(--x>=0) {laplacian[x]=0;}
                compute_laplacian(srd_d, laplacian, w, h, Dxx, Dyy, sx,sy, ex,ey);
                row = (sy*w+sx)|0;
                for(y = sy; y < ey; ++y, row += w) {
                    for(x = sx, rowx=row; x < ex; ++x, ++rowx) {
                        lv = laplacian[rowx];
                        if ((lv < -lap_thresh &&
                            lv < laplacian[rowx - 1]      && lv < laplacian[rowx + 1] &&
                            lv < laplacian[rowx - w]     && lv < laplacian[rowx + w] &&
                            lv < laplacian[rowx - w - 1] && lv < laplacian[rowx + w - 1] &&
                            lv < laplacian[rowx - w + 1] && lv < laplacian[rowx + w + 1])
                            ||
                            (lv > lap_thresh &&
                            lv > laplacian[rowx - 1]      && lv > laplacian[rowx + 1] &&
                            lv > laplacian[rowx - w]     && lv > laplacian[rowx + w] &&
                            lv > laplacian[rowx - w - 1] && lv > laplacian[rowx + w - 1] &&
                            lv > laplacian[rowx - w + 1] && lv > laplacian[rowx + w + 1])
                            ) {
                            min_eigen_value = hessian_min_eigen_value(srd_d, rowx, lv, Dxx, Dyy, Dxy, Dyx);
                            if (min_eigen_value > eigen_thresh) {
                                pt = points[number_of_points];
                                pt.x = x, pt.y = y, pt.score = min_eigen_value;
                                ++number_of_points;
                                ++x, ++rowx; // skip next pixel since this is maxima in 3x3
                            }
                        }
                    }
                }
                jsfeat.cache.put_buffer(lap_buf);
                return number_of_points;
            }
        };
    })();
    global.yape06 = yape06;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * Copyright 2007 Computer Vision Lab,
 * Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
 */
(function(global) {
    "use strict";
    //
    var yape = (function() {
        var precompute_directions = function(step, dirs, R) {
            var i = 0;
            var x, y;
            x = R;
            for(y = 0; y < x; y++, i++)
            {
                x = (Math.sqrt((R * R - y * y)) + 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for(x-- ; x < y && x >= 0; x--, i++)
            {
                y = (Math.sqrt((R * R - x * x)) + 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for( ; -x < y; x--, i++)
            {
                y = (Math.sqrt((R * R - x * x)) + 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for(y-- ; y >= 0; y--, i++)
            {
                x = (-Math.sqrt((R * R - y * y)) - 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for(; y > x; y--, i++)
            {
                x = (-Math.sqrt((R * R - y * y)) - 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for(x++ ; x <= 0; x++, i++)
            {
                y = (-Math.sqrt((R * R - x * x)) - 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for( ; x < -y; x++, i++)
            {
                y = (-Math.sqrt((R * R - x * x)) - 0.5)|0;
                dirs[i] = (x + step * y);
            }
            for(y++ ; y < 0; y++, i++)
            {
                x = (Math.sqrt((R * R - y * y)) + 0.5)|0;
                dirs[i] = (x + step * y);
            }
            dirs[i] = dirs[0];
            dirs[i + 1] = dirs[1];
            return i;
        }
        var third_check = function (Sb, off, step) {
            var n = 0;
            if(Sb[off+1]   != 0) n++;
            if(Sb[off-1]   != 0) n++;
            if(Sb[off+step]   != 0) n++;
            if(Sb[off+step+1] != 0) n++;
            if(Sb[off+step-1] != 0) n++;
            if(Sb[off-step]   != 0) n++;
            if(Sb[off-step+1] != 0) n++;
            if(Sb[off-step-1] != 0) n++;
            return n;
        }
        var is_local_maxima = function(p, off, v, step, neighborhood) {
            var x, y;
            if (v > 0) {
                off -= step*neighborhood;
                for (y= -neighborhood; y<=neighborhood; ++y) {
                    for (x= -neighborhood; x<=neighborhood; ++x) {
                        if (p[off+x] > v) return false;
                    }
                    off += step;
                }
            } else {
                off -= step*neighborhood;
                for (y= -neighborhood; y<=neighborhood; ++y) {
                    for (x= -neighborhood; x<=neighborhood; ++x) {
                        if (p[off+x] < v) return false;
                    }
                    off += step;
                }
            }
            return true;
        }
        var perform_one_point = function(I, x, Scores, Im, Ip, dirs, opposite, dirs_nb) {
          var score = 0;
          var a = 0, b = (opposite - 1)|0;
          var A=0, B0=0, B1=0, B2=0;
          var state=0;
          // WE KNOW THAT NOT(A ~ I0 & B1 ~ I0):
          A = I[x+dirs[a]];
          if ((A <= Ip)) {
            if ((A >= Im)) { // A ~ I0
              B0 = I[x+dirs[b]];
              if ((B0 <= Ip)) {
                if ((B0 >= Im)) { Scores[x] = 0; return; }
                else {
                  b++; B1 = I[x+dirs[b]];
                  if ((B1 > Ip)) {
                    b++; B2 = I[x+dirs[b]];
                    if ((B2 > Ip)) state = 3;
                    else if ((B2 < Im)) state = 6;
                    else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
                  }
                  else/* if ((B1 < Im))*/ {
                    b++; B2 = I[x+dirs[b]];
                    if ((B2 > Ip)) state = 7;
                    else if ((B2 < Im)) state = 2;
                    else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
                  }
                  //else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0
                }
              }
              else { // B0 < I0
                b++; B1 = I[x+dirs[b]];
                if ((B1 > Ip)) {
                  b++; B2 = I[x+dirs[b]];
                  if ((B2 > Ip)) state = 3;
                  else if ((B2 < Im)) state = 6;
                  else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
                }
                else if ((B1 < Im)) {
                  b++; B2 = I[x+dirs[b]];
                  if ((B2 > Ip)) state = 7;
                  else if ((B2 < Im)) state = 2;
                  else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
                }
                else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0
              }
            }
            else { // A > I0
              B0 = I[x+dirs[b]];
              if ((B0 > Ip)) { Scores[x] = 0; return; }
                b++; B1 = I[x+dirs[b]];
              if ((B1 > Ip)) { Scores[x] = 0; return; }
                b++; B2 = I[x+dirs[b]];
              if ((B2 > Ip)) { Scores[x] = 0; return; }
                state = 1;
            }
          }
          else // A < I0
          {
            B0 = I[x+dirs[b]];
            if ((B0 < Im)) { Scores[x] = 0; return; }
              b++; B1 = I[x+dirs[b]];
            if ((B1 < Im)) { Scores[x] = 0; return; }
              b++; B2 = I[x+dirs[b]];
            if ((B2 < Im)) { Scores[x] = 0; return; }
              state = 0;
          }
          for(a = 1; a <= opposite; a++)
          {
            A = I[x+dirs[a]];
            switch(state)
            {
            case 0:
              if ((A > Ip)) {
                B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 0; break; };
              }
              if ((A < Im)) {
                if ((B1 > Ip)) { Scores[x] = 0; return; }
                  if ((B2 > Ip)) { Scores[x] = 0; return; }
                    B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 8; break; };
              } 
              // A ~ I0
              if ((B1 <= Ip)) { Scores[x] = 0; return; }
                if ((B2 <= Ip)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
              if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
              if ((B2 < Im)) { score -= A + B1; state = 6; break; };
              { Scores[x] = 0; return; }
            case 1:
              if ((A < Im)) {
                B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 1; break; };
              }
              if ((A > Ip)) {
                if ((B1 < Im)) { Scores[x] = 0; return; }
                  if ((B2 < Im)) { Scores[x] = 0; return; }
                    B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 9; break; };
              }
              // A ~ I0
              if ((B1 >= Im)) { Scores[x] = 0; return; }
                if ((B2 >= Im)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
              if ((B2 < Im)) { score -= A + B1; state = 2; break; };
              if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
              { Scores[x] = 0; return; }
            case 2:
              if ((A > Ip)) { Scores[x] = 0; return; }
                B1 = B2; b++; B2 = I[x+dirs[b]];
              if ((A < Im))
              {
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 4; break; };
              } 
              // A ~ I0
              if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
              if ((B2 < Im)) { score -= A + B1; state = 2; break; };
              { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
            case 3:
              if ((A < Im)) { Scores[x] = 0; return; }
                B1 = B2; b++; B2 = I[x+dirs[b]];
              if ((A > Ip)) {
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 5; break; };
              }
              // A ~ I0
              if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
              if ((B2 < Im)) { score -= A + B1; state = 6; break; };
              { Scores[x] = 0; return; }
            case 4:
              if ((A > Ip)) { Scores[x] = 0; return; }
                if ((A < Im)) {
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                  if ((B2 > Ip)) { Scores[x] = 0; return; }
                    { score -= A + B1; state = 1; break; };
                }
                if ((B2 >= Im)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 < Im)) { score -= A + B1; state = 2; break; };
                if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
                { Scores[x] = 0; return; }
            case 5:
              if ((A < Im)) { Scores[x] = 0; return; }
                if ((A > Ip)) {
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                  if ((B2 < Im)) { Scores[x] = 0; return; }
                    { score -= A + B1; state = 0; break; };
                }
                // A ~ I0
                if ((B2 <= Ip)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
                if ((B2 < Im)) { score -= A + B1; state = 6; break; };
                { Scores[x] = 0; return; }
            case 7:
              if ((A > Ip)) { Scores[x] = 0; return; }
                if ((A < Im)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
              // A ~ I0
              if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
              if ((B2 < Im)) { score -= A + B1; state = 6; break; };
              { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
            case 6:
              if ((A > Ip)) { Scores[x] = 0; return; }
                if ((A < Im)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
              // A ~ I0
              if ((B2 < Im)) { score -= A + B1; state = 2; break; };
              if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
              { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
            case 8:
              if ((A > Ip)) {
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 9; break; };
              }
              if ((A < Im)) {
                B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 1; break; };
              }
              { Scores[x] = 0; return; }
            case 9:
              if ((A < Im)) {
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 > Ip)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 8; break; };
              }
              if ((A > Ip)) {
                B1 = B2; b++; B2 = I[x+dirs[b]];
                if ((B2 < Im)) { Scores[x] = 0; return; }
                  { score -= A + B1; state = 0; break; };
              }
              { Scores[x] = 0; return; }
            default:
              //"PB default";
              break;
            } // switch(state)
          } // for(a...)
          Scores[x] = (score + dirs_nb * I[x]);
        }
        var lev_table_t = (function () {
            function lev_table_t(w, h, r) {
                this.dirs = new Int32Array(1024);
                this.dirs_count = precompute_directions(w, this.dirs, r)|0;
                this.scores = new Int32Array(w*h);
                this.radius = r|0;
            }
            return lev_table_t;
        })();
        
        return {
            level_tables: [],
            tau: 7,
            init: function(width, height, radius, pyramid_levels) {
                if (typeof pyramid_levels === "undefined") { pyramid_levels = 1; }
                var i;
                radius = Math.min(radius, 7);
                radius = Math.max(radius, 3);
                for(i = 0; i < pyramid_levels; ++i) {
                    this.level_tables[i] = new lev_table_t(width>>i, height>>i, radius);
                }
            },
            detect: function(src, points, border) {
                if (typeof border === "undefined") { border = 4; }
                var t = this.level_tables[0];
                var R = t.radius|0, Rm1 = (R-1)|0;
                var dirs = t.dirs;
                var dirs_count = t.dirs_count|0;
                var opposite = dirs_count >> 1;
                var img = src.data, w=src.cols|0, h=src.rows|0,hw=w>>1;
                var scores = t.scores;
                var x=0,y=0,row=0,rowx=0,ip=0,im=0,abs_score=0, score=0;
                var tau = this.tau|0;
                var number_of_points = 0, pt;
                var sx = Math.max(R+1, border)|0;
                var sy = Math.max(R+1, border)|0;
                var ex = Math.min(w-R-2, w-border)|0;
                var ey = Math.min(h-R-2, h-border)|0;
                row = (sy*w+sx)|0;
                for(y = sy; y < ey; ++y, row+=w) {
                    for(x = sx, rowx = row; x < ex; ++x, ++rowx) {
                        ip = img[rowx] + tau, im = img[rowx] - tau;
                        if (im<img[rowx+R] && img[rowx+R]<ip && im<img[rowx-R] && img[rowx-R]<ip) {
                            scores[rowx] = 0;
                        } else {
                            perform_one_point(img, rowx, scores, im, ip, dirs, opposite, dirs_count);
                        }
                    }
                }
                // local maxima
                row = (sy*w+sx)|0;
                for(y = sy; y < ey; ++y, row+=w) {
                    for(x = sx, rowx = row; x < ex; ++x, ++rowx) {
                        score = scores[rowx];
                        abs_score = Math.abs(score);
                        if(abs_score < 5) {
                            // if this pixel is 0, the next one will not be good enough. Skip it.
                            ++x, ++rowx;
                        } else {
                            if(third_check(scores, rowx, w) >= 3 && is_local_maxima(scores, rowx, score, hw, R)) {
                                pt = points[number_of_points];
                                pt.x = x, pt.y = y, pt.score = abs_score;
                                ++number_of_points;
                                x += Rm1, rowx += Rm1;
                            }
                        }
                    }
                }
                return number_of_points;
            }
        };
    })();
    global.yape = yape;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * Original implementation derived from OpenCV,
 * @authors Ethan Rublee, Vincent Rabaud, Gary Bradski
 */
(function(global) {
    "use strict";
    //
    var orb = (function() {
    	var bit_pattern_31_ = new Int32Array([
		    8,-3, 9,5/*mean (0), correlation (0)*/,
		    4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
		    -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
		    7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
		    2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
		    1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
		    -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
		    -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
		    -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
		    10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
		    -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
		    -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
		    7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
		    -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
		    -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
		    -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
		    12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
		    -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
		    -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
		    11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
		    4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
		    5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
		    3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
		    -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
		    -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
		    -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
		    -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
		    -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
		    -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
		    5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
		    5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
		    1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
		    9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
		    4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
		    2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
		    -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
		    -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
		    4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
		    0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
		    -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
		    -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
		    -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
		    8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
		    0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
		    7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
		    -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
		    10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
		    -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
		    10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
		    -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
		    -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
		    3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
		    5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
		    -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
		    3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
		    2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
		    -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
		    -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
		    -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
		    -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
		    6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
		    -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
		    -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
		    -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
		    3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
		    -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
		    -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
		    2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
		    -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
		    -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
		    5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
		    -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
		    -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
		    -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
		    10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
		    7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
		    -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
		    -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
		    7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
		    -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
		    -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
		    -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
		    7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
		    -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
		    1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
		    2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
		    -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
		    -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
		    7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
		    1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
		    9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
		    -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
		    -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
		    7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
		    12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
		    6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
		    5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
		    2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
		    3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
		    2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
		    9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
		    -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
		    -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
		    1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
		    6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
		    2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
		    6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
		    3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
		    7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
		    -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
		    -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
		    -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
		    -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
		    8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
		    4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
		    -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
		    4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
		    -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
		    -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
		    7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
		    -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
		    -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
		    8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
		    -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
		    1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
		    7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
		    -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
		    11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
		    -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
		    3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
		    5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
		    0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
		    -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
		    0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
		    -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
		    5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
		    3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
		    -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
		    -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
		    -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
		    6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
		    -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
		    -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
		    1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
		    4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
		    -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
		    2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
		    -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
		    4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
		    -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
		    -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
		    7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
		    4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
		    -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
		    7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
		    7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
		    -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
		    -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
		    -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
		    2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
		    10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
		    -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
		    8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
		    2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
		    -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
		    -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
		    -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
		    5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
		    -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
		    -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
		    -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
		    -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
		    -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
		    2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
		    -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
		    -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
		    -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
		    -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
		    6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
		    -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
		    11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
		    7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
		    -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
		    -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
		    -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
		    -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
		    -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
		    -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
		    -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
		    -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
		    1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
		    1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
		    9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
		    5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
		    -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
		    -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
		    -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
		    -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
		    8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
		    2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
		    7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
		    -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
		    -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
		    4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
		    3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
		    -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
		    5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
		    4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
		    -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
		    0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
		    -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
		    3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
		    -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
		    8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
		    -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
		    2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
		    10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
		    6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
		    -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
		    -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
		    -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
		    -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
		    -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
		    4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
		    2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
		    6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
		    3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
		    11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
		    -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
		    4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
		    2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
		    -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
		    -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
		    -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
		    6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
		    0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
		    -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
		    -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
		    -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
		    5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
		    2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
		    -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
		    9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
		    11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
		    3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
		    -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
		    3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
		    -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
		    5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
		    8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
		    7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
		    -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
		    7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
		    9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
		    7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
		    -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
		]);
	    var H = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
	    var patch_img = new jsfeat.matrix_t(32, 32, jsfeat.U8_t|jsfeat.C1_t);
	    var rectify_patch = function(src, dst, angle, px, py, psize) {
	    	var cosine = Math.cos(angle);
	    	var sine   = Math.sin(angle);
	        H.data[0] = cosine, H.data[1] = -sine,    H.data[2] = (-cosine + sine  ) * psize*0.5 + px,
	        H.data[3] = sine,   H.data[4] =  cosine,  H.data[5] = (-sine   - cosine) * psize*0.5 + py;
	        jsfeat.imgproc.warp_affine(src, dst, H, 128);
	    }
    	return {
    		describe: function(src, corners, count, descriptors) {
    			var DESCR_SIZE = 32; // bytes;
				var i=0,b=0,px=0.0,py=0.0,angle=0.0;
				var t0=0, t1=0, val=0;
				var img = src.data, w = src.cols, h = src.rows;
				var patch_d = patch_img.data;
				var patch_off = 16*32 + 16; // center of patch
				var patt=0;
				if(!(descriptors.type&jsfeat.U8_t)) {
					// relocate to U8 type
					descriptors.type = jsfeat.U8_t;
					descriptors.cols = DESCR_SIZE;
	                descriptors.rows = count;
	                descriptors.channel = 1;
					descriptors.allocate();
				} else {
					descriptors.resize(DESCR_SIZE, count, 1);
				}
				var descr_d = descriptors.data;
				var descr_off = 0;
				for(i = 0; i < count; ++i) {
					px = corners[i].x;
					py = corners[i].y;
					angle = corners[i].angle;
					rectify_patch(src, patch_img, angle, px, py, 32);
					// describe the patch
					patt = 0;
					for (b = 0; b < DESCR_SIZE; ++b) {
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val = (t0 < t1)|0;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 1;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 2;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 3;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 4;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 5;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 6;
			            
			            t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
			            val |= (t0 < t1) << 7;
			            
			            descr_d[descr_off+b] = val;
			        }
			        descr_off += DESCR_SIZE;
				}
    		}
    	};
    })();
    global.orb = orb;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * this code is a rewrite from OpenCV's Lucas-Kanade optical flow implementation
 */
(function(global) {
    "use strict";
    //
    var optical_flow_lk = (function() {
        // short link to shar deriv
        var scharr_deriv = jsfeat.imgproc.scharr_derivatives;
        return {
            track: function(prev_pyr, curr_pyr, prev_xy, curr_xy, count, win_size, max_iter, status, eps, min_eigen_threshold) {
                if (typeof max_iter === "undefined") { max_iter = 30; }
                if (typeof status === "undefined") { status = new Uint8Array(count); }
                if (typeof eps === "undefined") { eps = 0.01; }
                if (typeof min_eigen_threshold === "undefined") { min_eigen_threshold = 0.0001; }
                var half_win = (win_size-1)*0.5;
                var win_area = (win_size*win_size)|0;
                var win_area2 = win_area << 1;
                var prev_imgs = prev_pyr.data, next_imgs = curr_pyr.data;
                var img_prev=prev_imgs[0].data,img_next=next_imgs[0].data;
                var w0 = prev_imgs[0].cols, h0 = prev_imgs[0].rows,lw=0,lh=0;
                var iwin_node = jsfeat.cache.get_buffer(win_area<<2);
                var deriv_iwin_node = jsfeat.cache.get_buffer(win_area2<<2);
                var deriv_lev_node = jsfeat.cache.get_buffer((h0*(w0<<1))<<2);
                var deriv_m = new jsfeat.matrix_t(w0, h0, jsfeat.S32C2_t, deriv_lev_node.data);
                var iwin_buf = iwin_node.i32;
                var deriv_iwin = deriv_iwin_node.i32;
                var deriv_lev = deriv_lev_node.i32;
                var dstep=0,src=0,dsrc=0,iptr=0,diptr=0,jptr=0;
                var lev_sc=0.0,prev_x=0.0,prev_y=0.0,next_x=0.0,next_y=0.0;
                var prev_delta_x=0.0,prev_delta_y=0.0,delta_x=0.0,delta_y=0.0;
                var iprev_x=0,iprev_y=0,inext_x=0,inext_y=0;
                var i=0,j=0,x=0,y=0,level=0,ptid=0,iter=0;
                var brd_tl=0,brd_r=0,brd_b=0;
                var a=0.0,b=0.0,b1=0.0,b2=0.0;
                // fixed point math
                var W_BITS14 = 14;
                var W_BITS4 = 14;
                var W_BITS1m5 = W_BITS4 - 5;
                var W_BITS1m51 = (1 << ((W_BITS1m5) - 1));
                var W_BITS14_ = (1 << W_BITS14);
                var W_BITS41 = (1 << ((W_BITS4) - 1));
                var FLT_SCALE = 1.0/(1 << 20);
                var iw00=0,iw01=0,iw10=0,iw11=0,ival=0,ixval=0,iyval=0;
                var A11=0.0,A12=0.0,A22=0.0,D=0.0,min_eig=0.0;
                var FLT_EPSILON = 0.00000011920929;
                eps *= eps;
                // reset status
                for(; i < count; ++i) {
                    status[i] = 1;
                }
                var max_level = (prev_pyr.levels - 1)|0;
                level = max_level;
                for(; level >= 0; --level) {
                    lev_sc = (1.0/(1 << level));
                    lw = w0 >> level;
                    lh = h0 >> level;
                    dstep = lw << 1;
                    img_prev = prev_imgs[level].data;
                    img_next = next_imgs[level].data;
                    
                    brd_r = (lw - win_size)|0;
                    brd_b = (lh - win_size)|0;
                    // calculate level derivatives
                    scharr_deriv(prev_imgs[level], deriv_m);
                    // iterate through points
                    for(ptid = 0; ptid < count; ++ptid) {
                        i = ptid << 1;
                        j = i + 1;
                        prev_x = prev_xy[i]*lev_sc;
                        prev_y = prev_xy[j]*lev_sc;
                        if( level == max_level ) {
                            next_x = prev_x;
                            next_y = prev_y;
                        } else {
                            next_x = curr_xy[i]*2.0;
                            next_y = curr_xy[j]*2.0;
                        }
                        curr_xy[i] = next_x;
                        curr_xy[j] = next_y;
                        prev_x -= half_win;
                        prev_y -= half_win;
                        iprev_x = prev_x|0;
                        iprev_y = prev_y|0;
                        // border check
                        x = (iprev_x <= brd_tl)|(iprev_x >= brd_r)|(iprev_y <= brd_tl)|(iprev_y >= brd_b);
                        if( x != 0 ) {
                            if( level == 0 ) {
                                status[ptid] = 0;
                            }
                            continue;
                        }
                        a = prev_x - iprev_x;
                        b = prev_y - iprev_y;
                        iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0;
                        iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0;
                        iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0;
                        iw11 = (W_BITS14_ - iw00 - iw01 - iw10);
                        A11 = 0.0, A12 = 0.0, A22 = 0.0;
                        // extract the patch from the first image, compute covariation matrix of derivatives
                        for( y = 0; y < win_size; ++y ) {
                            src = ( (y + iprev_y)*lw + iprev_x )|0;
                            dsrc = src << 1;
                            iptr = (y*win_size)|0;
                            diptr = iptr << 1;
                            for(x = 0 ; x < win_size; ++x, ++src, ++iptr, dsrc += 2) {
                                ival = ( (img_prev[src])*iw00 + (img_prev[src+1])*iw01 +
                                        (img_prev[src+lw])*iw10 + (img_prev[src+lw+1])*iw11 );
                                ival = (((ival) + W_BITS1m51) >> (W_BITS1m5));
                                ixval = ( deriv_lev[dsrc]*iw00 + deriv_lev[dsrc+2]*iw01 +
                                        deriv_lev[dsrc+dstep]*iw10 + deriv_lev[dsrc+dstep+2]*iw11 );
                                ixval = (((ixval) + W_BITS41) >> (W_BITS4));
                                iyval = ( deriv_lev[dsrc+1]*iw00 + deriv_lev[dsrc+3]*iw01 + deriv_lev[dsrc+dstep+1]*iw10 +
                                        deriv_lev[dsrc+dstep+3]*iw11 );
                                iyval = (((iyval) + W_BITS41) >> (W_BITS4));
                                iwin_buf[iptr] = ival;
                                deriv_iwin[diptr++] = ixval;
                                deriv_iwin[diptr++] = iyval;
                                A11 += ixval*ixval;
                                A12 += ixval*iyval;
                                A22 += iyval*iyval;
                            }
                        }
                        A11 *= FLT_SCALE; A12 *= FLT_SCALE; A22 *= FLT_SCALE;
                        D = A11*A22 - A12*A12;
                        min_eig = (A22 + A11 - Math.sqrt((A11-A22)*(A11-A22) + 4.0*A12*A12)) / win_area2;
                        if( min_eig < min_eigen_threshold || D < FLT_EPSILON )
                        {
                            if( level == 0 ) {
                                status[ptid] = 0;
                            }
                            continue;
                        }
                        D = 1.0/D;
                        next_x -= half_win;
                        next_y -= half_win;
                        prev_delta_x = 0.0;
                        prev_delta_y = 0.0;
                        for( iter = 0; iter < max_iter; ++iter ) {
                            inext_x = next_x|0;
                            inext_y = next_y|0;
                            x = (inext_x <= brd_tl)|(inext_x >= brd_r)|(inext_y <= brd_tl)|(inext_y >= brd_b);
                            if( x != 0 ) {
                                if( level == 0 ) {
                                    status[ptid] = 0;
                                }
                                break;
                            }
                            a = next_x - inext_x;
                            b = next_y - inext_y;
                            iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0;
                            iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0;
                            iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0;
                            iw11 = (W_BITS14_ - iw00 - iw01 - iw10);
                            b1 = 0.0, b2 = 0.0;
                            for( y = 0; y < win_size; ++y ) {
                                jptr = ( (y + inext_y)*lw + inext_x )|0;
                                iptr = (y*win_size)|0;
                                diptr = iptr << 1;
                                for( x = 0 ; x < win_size; ++x, ++jptr, ++iptr ) {
                                    ival = ( (img_next[jptr])*iw00 + (img_next[jptr+1])*iw01 +
                                            (img_next[jptr+lw])*iw10 + (img_next[jptr+lw+1])*iw11 );
                                    ival = (((ival) + W_BITS1m51) >> (W_BITS1m5));
                                    ival = (ival - iwin_buf[iptr]);
                                    b1 += ival * deriv_iwin[diptr++];
                                    b2 += ival * deriv_iwin[diptr++];
                                }
                            }
                            b1 *= FLT_SCALE;
                            b2 *= FLT_SCALE;
                            delta_x = ((A12*b2 - A22*b1) * D);
                            delta_y = ((A12*b1 - A11*b2) * D);
                            next_x += delta_x;
                            next_y += delta_y;
                            curr_xy[i] = next_x + half_win;
                            curr_xy[j] = next_y + half_win;
                            if( delta_x*delta_x + delta_y*delta_y <= eps ) {
                                break;
                            }
                            if( iter > 0 && Math.abs(delta_x + prev_delta_x) < 0.01 &&
                                            Math.abs(delta_y + prev_delta_y) < 0.01 ) {
                                curr_xy[i] -= delta_x*0.5;
                                curr_xy[j] -= delta_y*0.5;
                                break;
                            }
                            prev_delta_x = delta_x;
                            prev_delta_y = delta_y;
                        }
                    } // points loop
                } // levels loop
                jsfeat.cache.put_buffer(iwin_node);
                jsfeat.cache.put_buffer(deriv_iwin_node);
                jsfeat.cache.put_buffer(deriv_lev_node);
            }
        };
    })();
    global.optical_flow_lk = optical_flow_lk;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * this code is a rewrite from https://github.com/mtschirs/js-objectdetect implementation
 * @author Martin Tschirsich / http://www.tu-darmstadt.de/~m_t
 */
(function(global) {
    "use strict";
    //
    var haar = (function() {
        var _group_func = function(r1, r2) {
            var distance = (r1.width * 0.25 + 0.5)|0;
            return r2.x <= r1.x + distance &&
                   r2.x >= r1.x - distance &&
                   r2.y <= r1.y + distance &&
                   r2.y >= r1.y - distance &&
                   r2.width <= (r1.width * 1.5 + 0.5)|0 &&
                   (r2.width * 1.5 + 0.5)|0 >= r1.width;
        }
        
        return {
            edges_density: 0.07,
            detect_single_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale, classifier) {
                var win_w = (classifier.size[0] * scale)|0,
                    win_h = (classifier.size[1] * scale)|0,
                    step_x = (0.5 * scale + 1.5)|0,
                    step_y = step_x;
                var i,j,k,x,y,ex=(width-win_w)|0,ey=(height-win_h)|0;
                var w1=(width+1)|0,edge_dens,mean,variance,std;
                var inv_area = 1.0 / (win_w * win_h);
                var stages,stage,trees,tree,sn,tn,fn,found=true,stage_thresh,stage_sum,tree_sum,feature,features;
                var fi_a,fi_b,fi_c,fi_d,fw,fh;
                var ii_a=0,ii_b=win_w,ii_c=win_h*w1,ii_d=ii_c+win_w;
                var edges_thresh = ((win_w*win_h) * 0xff * this.edges_density)|0;
                // if too much gradient we also can skip
                //var edges_thresh_high = ((win_w*win_h) * 0xff * 0.3)|0;
                var rects = [];
                for(y = 0; y < ey; y += step_y) {
                    ii_a = y * w1;
                    for(x = 0; x < ex; x += step_x, ii_a += step_x) {
                        mean =    int_sum[ii_a] 
                                - int_sum[ii_a+ii_b]
                                - int_sum[ii_a+ii_c]
                                + int_sum[ii_a+ii_d];
                        // canny prune
                        if(int_canny_sum) {
                            edge_dens = (int_canny_sum[ii_a] 
                                        - int_canny_sum[ii_a+ii_b]
                                        - int_canny_sum[ii_a+ii_c]
                                        + int_canny_sum[ii_a+ii_d]);
                            if(edge_dens < edges_thresh || mean < 20) {
                                x += step_x, ii_a += step_x;
                                continue;
                            }
                        }
                        mean *= inv_area;
                        variance = (int_sqsum[ii_a] 
                                    - int_sqsum[ii_a+ii_b]
                                    - int_sqsum[ii_a+ii_c]
                                    + int_sqsum[ii_a+ii_d]) * inv_area - mean * mean;
                        std = variance > 0. ? Math.sqrt(variance) : 1;
                        stages = classifier.complexClassifiers;
                        sn = stages.length;
                        found =  true;
                        for(i = 0; i < sn; ++i) {
                            stage = stages[i];
                            stage_thresh = stage.threshold;
                            trees = stage.simpleClassifiers;
                            tn = trees.length;
                            stage_sum = 0;
                            for(j = 0; j < tn; ++j) {
                                tree = trees[j];
                                tree_sum = 0;
                                features = tree.features;
                                fn = features.length;
                                if(tree.tilted === 1) {
                                    for(k=0; k < fn; ++k) {
                                        feature = features[k];
                                        fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1;
                                        fw = ~~(feature[2] * scale);
                                        fh = ~~(feature[3] * scale);
                                        fi_b = fw * w1;
                                        fi_c =  fh * w1;
                                        tree_sum += (int_tilted[fi_a]
                                                    - int_tilted[fi_a + fw + fi_b]
                                                    - int_tilted[fi_a - fh + fi_c]
                                                    + int_tilted[fi_a + fw - fh + fi_b + fi_c]) * feature[4];
                                    }
                                } else {
                                    for(k=0; k < fn; ++k) {
                                        feature = features[k];
                                        fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1;
                                        fw = ~~(feature[2] * scale);
                                        fh = ~~(feature[3] * scale);
                                        fi_c = fh * w1;
                                        tree_sum += (int_sum[fi_a] 
                                                    - int_sum[fi_a+fw]
                                                    - int_sum[fi_a+fi_c]
                                                    + int_sum[fi_a+fi_c+fw]) * feature[4];
                                    }
                                }
                                stage_sum += (tree_sum * inv_area < tree.threshold * std) ? tree.left_val : tree.right_val;
                            }
                            if (stage_sum < stage_thresh) {
                                found = false;
                                break;
                            }
                        }
                        
                        if(found) {
                            rects.push({"x" : x,
                                        "y" : y,
                                        "width" : win_w,
                                        "height" : win_h,
                                        "neighbor" : 1,
                                        "confidence" : stage_sum});
                            x += step_x, ii_a += step_x;
                        }
                    }
                }
                return rects;
            },
            detect_multi_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, classifier, scale_factor, scale_min) {
                if (typeof scale_factor === "undefined") { scale_factor = 1.2; }
                if (typeof scale_min === "undefined") { scale_min = 1.0; }
                var win_w = classifier.size[0];
                var win_h = classifier.size[1];
                var rects = [];
                while (scale_min * win_w < width && scale_min * win_h < height) {
                    rects = rects.concat(this.detect_single_scale(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale_min, classifier));
                    scale_min *= scale_factor;
                }
                return rects;
            },
            // OpenCV method to group detected rectangles
            group_rectangles: function(rects, min_neighbors) {
                if (typeof min_neighbors === "undefined") { min_neighbors = 1; }
                var i, j, n = rects.length;
                var node = [];
                for (i = 0; i < n; ++i) {
                    node[i] = {"parent" : -1,
                               "element" : rects[i],
                               "rank" : 0};
                }
                for (i = 0; i < n; ++i) {
                    if (!node[i].element)
                        continue;
                    var root = i;
                    while (node[root].parent != -1)
                        root = node[root].parent;
                    for (j = 0; j < n; ++j) {
                        if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) {
                            var root2 = j;
                            while (node[root2].parent != -1)
                                root2 = node[root2].parent;
                            if(root2 != root) {
                                if(node[root].rank > node[root2].rank)
                                    node[root2].parent = root;
                                else {
                                    node[root].parent = root2;
                                    if (node[root].rank == node[root2].rank)
                                    node[root2].rank++;
                                    root = root2;
                                }
                                /* compress path from node2 to the root: */
                                var temp, node2 = j;
                                while (node[node2].parent != -1) {
                                    temp = node2;
                                    node2 = node[node2].parent;
                                    node[temp].parent = root;
                                }
                                /* compress path from node to the root: */
                                node2 = i;
                                while (node[node2].parent != -1) {
                                    temp = node2;
                                    node2 = node[node2].parent;
                                    node[temp].parent = root;
                                }
                            }
                        }
                    }
                }
                var idx_seq = [];
                var class_idx = 0;
                for(i = 0; i < n; i++) {
                    j = -1;
                    var node1 = i;
                    if(node[node1].element) {
                        while (node[node1].parent != -1)
                            node1 = node[node1].parent;
                        if(node[node1].rank >= 0)
                            node[node1].rank = ~class_idx++;
                        j = ~node[node1].rank;
                    }
                    idx_seq[i] = j;
                }
                
                var comps = [];
                for (i = 0; i < class_idx+1; ++i) {
                    comps[i] = {"neighbors" : 0,
                                "x" : 0,
                                "y" : 0,
                                "width" : 0,
                                "height" : 0,
                                "confidence" : 0};
                }
                // count number of neighbors
                for(i = 0; i < n; ++i) {
                    var r1 = rects[i];
                    var idx = idx_seq[i];
                    if (comps[idx].neighbors == 0)
                        comps[idx].confidence = r1.confidence;
                    ++comps[idx].neighbors;
                    comps[idx].x += r1.x;
                    comps[idx].y += r1.y;
                    comps[idx].width += r1.width;
                    comps[idx].height += r1.height;
                    comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence);
                }
                var seq2 = [];
                // calculate average bounding box
                for(i = 0; i < class_idx; ++i) {
                    n = comps[i].neighbors;
                    if (n >= min_neighbors)
                        seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n),
                                   "y" : (comps[i].y * 2 + n) / (2 * n),
                                   "width" : (comps[i].width * 2 + n) / (2 * n),
                                   "height" : (comps[i].height * 2 + n) / (2 * n),
                                   "neighbors" : comps[i].neighbors,
                                   "confidence" : comps[i].confidence});
                }
                var result_seq = [];
                n = seq2.length;
                // filter out small face rectangles inside large face rectangles
                for(i = 0; i < n; ++i) {
                    var r1 = seq2[i];
                    var flag = true;
                    for(j = 0; j < n; ++j) {
                        var r2 = seq2[j];
                        var distance = (r2.width * 0.25 + 0.5)|0;
                        if(i != j &&
                           r1.x >= r2.x - distance &&
                           r1.y >= r2.y - distance &&
                           r1.x + r1.width <= r2.x + r2.width + distance &&
                           r1.y + r1.height <= r2.y + r2.height + distance &&
                           (r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) {
                            flag = false;
                            break;
                        }
                    }
                    if(flag)
                        result_seq.push(r1);
                }
                return result_seq;
            }
        };
    })();
    global.haar = haar;
})(jsfeat);
/**
 * BBF: Brightness Binary Feature
 *
 * @author Eugene Zatepyakin / http://inspirit.ru/
 *
 * this code is a rewrite from https://github.com/liuliu/ccv implementation
 * @author Liu Liu / http://liuliu.me/
 *
 * The original paper refers to: YEF? Real-Time Object Detection, Yotam Abramson and Bruno Steux
 */
(function(global) {
    "use strict";
    //
    var bbf = (function() {
        var _group_func = function(r1, r2) {
            var distance = (r1.width * 0.25 + 0.5)|0;
            return r2.x <= r1.x + distance &&
                   r2.x >= r1.x - distance &&
                   r2.y <= r1.y + distance &&
                   r2.y >= r1.y - distance &&
                   r2.width <= (r1.width * 1.5 + 0.5)|0 &&
                   (r2.width * 1.5 + 0.5)|0 >= r1.width;
        }
        var img_pyr = new jsfeat.pyramid_t(1);
        return {
            interval: 4,
            scale: 1.1486,
            next: 5,
            scale_to: 1,
            // make features local copy
            // to avoid array allocation with each scale
            // this is strange but array works faster than Int32 version???
            prepare_cascade: function(cascade) {
                var sn = cascade.stage_classifier.length;
                for (var j = 0; j < sn; j++) {
                    var orig_feature = cascade.stage_classifier[j].feature;
                    var f_cnt = cascade.stage_classifier[j].count;
                    var feature = cascade.stage_classifier[j]._feature = new Array(f_cnt);
                    for (var k = 0; k < f_cnt; k++) {
                        feature[k] = {"size" : orig_feature[k].size,
                                      "px" : new Array(orig_feature[k].size),
                                      "pz" : new Array(orig_feature[k].size),
                                      "nx" : new Array(orig_feature[k].size),
                                      "nz" : new Array(orig_feature[k].size)};
                    }
                }
            },
            build_pyramid: function(src, min_width, min_height, interval) {
                if (typeof interval === "undefined") { interval = 4; }
                var sw=src.cols,sh=src.rows;
                var i=0,nw=0,nh=0;
                var new_pyr=false;
                var src0=src,src1=src;
                var data_type = jsfeat.U8_t | jsfeat.C1_t;
                this.interval = interval;
                this.scale = Math.pow(2, 1 / (this.interval + 1));
                this.next = (this.interval + 1)|0;
                this.scale_to = (Math.log(Math.min(sw / min_width, sh / min_height)) / Math.log(this.scale))|0;
                var pyr_l = ((this.scale_to + this.next * 2) * 4) | 0;
                if(img_pyr.levels != pyr_l) {
                    img_pyr.levels = pyr_l;
                    img_pyr.data = new Array(pyr_l);
                    new_pyr = true;
                    img_pyr.data[0] = src; // first is src
                }
                for (i = 1; i <= this.interval; ++i) {
                    nw = (sw / Math.pow(this.scale, i))|0;
                    nh = (sh / Math.pow(this.scale, i))|0;
                    src0 = img_pyr.data[i<<2];
                    if(new_pyr || nw != src0.cols || nh != src0.rows) {
                        img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type);
                        src0 = img_pyr.data[i<<2];
                    }
                    jsfeat.imgproc.resample(src, src0, nw, nh);
                }
                for (i = this.next; i < this.scale_to + this.next * 2; ++i) {
                    src1 = img_pyr.data[(i << 2) - (this.next << 2)];
                    src0 = img_pyr.data[i<<2];
                    nw = src1.cols >> 1;
                    nh = src1.rows >> 1;
                    if(new_pyr || nw != src0.cols || nh != src0.rows) {
                        img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type);
                        src0 = img_pyr.data[i<<2];
                    }
                    jsfeat.imgproc.pyrdown(src1, src0);
                }
                for (i = this.next * 2; i < this.scale_to + this.next * 2; ++i) {
                    src1 = img_pyr.data[(i << 2) - (this.next << 2)];
                    nw = src1.cols >> 1;
                    nh = src1.rows >> 1;
                    src0 = img_pyr.data[(i<<2)+1];
                    if(new_pyr || nw != src0.cols || nh != src0.rows) {
                        img_pyr.data[(i<<2)+1] = new jsfeat.matrix_t(nw, nh, data_type);
                        src0 = img_pyr.data[(i<<2)+1];
                    }
                    jsfeat.imgproc.pyrdown(src1, src0, 1, 0);
                    //
                    src0 = img_pyr.data[(i<<2)+2];
                    if(new_pyr || nw != src0.cols || nh != src0.rows) {
                        img_pyr.data[(i<<2)+2] = new jsfeat.matrix_t(nw, nh, data_type);
                        src0 = img_pyr.data[(i<<2)+2];
                    }
                    jsfeat.imgproc.pyrdown(src1, src0, 0, 1);
                    //
                    src0 = img_pyr.data[(i<<2)+3];
                    if(new_pyr || nw != src0.cols || nh != src0.rows) {
                        img_pyr.data[(i<<2)+3] = new jsfeat.matrix_t(nw, nh, data_type);
                        src0 = img_pyr.data[(i<<2)+3];
                    }
                    jsfeat.imgproc.pyrdown(src1, src0, 1, 1);
                }
                return img_pyr;
            },
            detect: function(pyramid, cascade) {
                var interval = this.interval;
                var scale = this.scale;
                var next = this.next;
                var scale_upto = this.scale_to;
                var i=0,j=0,k=0,n=0,x=0,y=0,q=0,sn=0,f_cnt=0,q_cnt=0,p=0,pmin=0,nmax=0,f=0,i4=0,qw=0,qh=0;
                var sum=0.0, alpha, feature, orig_feature, feature_k, feature_o, flag = true, shortcut=true;
                var scale_x = 1.0, scale_y = 1.0;
                var dx = [0, 1, 0, 1];
                var dy = [0, 0, 1, 1];
                var seq = [];
                var pyr=pyramid.data, bpp = 1, bpp2 = 2, bpp4 = 4;
                var u8 = [], u8o = [0,0,0];
                var step = [0,0,0];
                var paddings = [0,0,0];
                for (i = 0; i < scale_upto; i++) {
                    i4 = (i<<2);
                    qw = pyr[i4 + (next << 3)].cols - (cascade.width >> 2);
                    qh = pyr[i4 + (next << 3)].rows - (cascade.height >> 2);
                    step[0] = pyr[i4].cols * bpp;
                    step[1] = pyr[i4 + (next << 2)].cols * bpp;
                    step[2] = pyr[i4 + (next << 3)].cols * bpp;
                    paddings[0] = (pyr[i4].cols * bpp4) - (qw * bpp4);
                    paddings[1] = (pyr[i4 + (next << 2)].cols * bpp2) - (qw * bpp2);
                    paddings[2] = (pyr[i4 + (next << 3)].cols * bpp) - (qw * bpp);
                    sn = cascade.stage_classifier.length;
                    for (j = 0; j < sn; j++) {
                        orig_feature = cascade.stage_classifier[j].feature;
                        feature = cascade.stage_classifier[j]._feature;
                        f_cnt = cascade.stage_classifier[j].count;
                        for (k = 0; k < f_cnt; k++) {
                            feature_k = feature[k];
                            feature_o = orig_feature[k];
                            q_cnt = feature_o.size|0;
                            for (q = 0; q < q_cnt; q++) {
                                feature_k.px[q] = (feature_o.px[q] * bpp) + feature_o.py[q] * step[feature_o.pz[q]];
                                feature_k.pz[q] = feature_o.pz[q];
                                feature_k.nx[q] = (feature_o.nx[q] * bpp) + feature_o.ny[q] * step[feature_o.nz[q]];
                                feature_k.nz[q] = feature_o.nz[q];
                            }
                        }
                    }
                    u8[0] = pyr[i4].data; u8[1] = pyr[i4 + (next<<2)].data;
                    for (q = 0; q < 4; q++) {
                        u8[2] = pyr[i4 + (next<<3) + q].data;
                        u8o[0] = (dx[q]*bpp2) + dy[q] * (pyr[i4].cols*bpp2); 
                        u8o[1] = (dx[q]*bpp) + dy[q] * (pyr[i4 + (next<<2)].cols*bpp); 
                        u8o[2] = 0;
                        for (y = 0; y < qh; y++) {
                            for (x = 0; x < qw; x++) {
                                sum = 0;
                                flag = true;
                                sn = cascade.stage_classifier.length;
                                for (j = 0; j < sn; j++) {
                                    sum = 0;
                                    alpha = cascade.stage_classifier[j].alpha;
                                    feature = cascade.stage_classifier[j]._feature;
                                    f_cnt = cascade.stage_classifier[j].count;
                                    for (k = 0; k < f_cnt; k++) {
                                        feature_k = feature[k];
                                        pmin = u8[feature_k.pz[0]][u8o[feature_k.pz[0]] + feature_k.px[0]];
                                        nmax = u8[feature_k.nz[0]][u8o[feature_k.nz[0]] + feature_k.nx[0]];
                                        if (pmin <= nmax) {
                                            sum += alpha[k << 1];
                                        } else {
                                            shortcut = true;
                                            q_cnt = feature_k.size;
                                            for (f = 1; f < q_cnt; f++) {
                                                if (feature_k.pz[f] >= 0) {
                                                    p = u8[feature_k.pz[f]][u8o[feature_k.pz[f]] + feature_k.px[f]];
                                                    if (p < pmin) {
                                                        if (p <= nmax) {
                                                            shortcut = false;
                                                            break;
                                                        }
                                                        pmin = p;
                                                    }
                                                }
                                                if (feature_k.nz[f] >= 0) {
                                                    n = u8[feature_k.nz[f]][u8o[feature_k.nz[f]] + feature_k.nx[f]];
                                                    if (n > nmax) {
                                                        if (pmin <= n) {
                                                            shortcut = false;
                                                            break;
                                                        }
                                                        nmax = n;
                                                    }
                                                }
                                            }
                                            sum += (shortcut) ? alpha[(k << 1) + 1] : alpha[k << 1];
                                        }
                                    }
                                    if (sum < cascade.stage_classifier[j].threshold) {
                                        flag = false;
                                        break;
                                    }
                                }
                                if (flag) {
                                    seq.push({"x" : (x * 4 + dx[q] * 2) * scale_x,
                                              "y" : (y * 4 + dy[q] * 2) * scale_y,
                                              "width" : cascade.width * scale_x,
                                              "height" : cascade.height * scale_y,
                                              "neighbor" : 1,
                                              "confidence" : sum});
                                    ++x;
                                    u8o[0] += bpp4;
                                    u8o[1] += bpp2;
                                    u8o[2] += bpp;
                                }
                                u8o[0] += bpp4;
                                u8o[1] += bpp2;
                                u8o[2] += bpp;
                            }
                            u8o[0] += paddings[0];
                            u8o[1] += paddings[1];
                            u8o[2] += paddings[2];
                        }
                    }
                    scale_x *= scale;
                    scale_y *= scale;
                }
                return seq;
            },
            // OpenCV method to group detected rectangles
            group_rectangles: function(rects, min_neighbors) {
                if (typeof min_neighbors === "undefined") { min_neighbors = 1; }
                var i, j, n = rects.length;
                var node = [];
                for (i = 0; i < n; ++i) {
                    node[i] = {"parent" : -1,
                               "element" : rects[i],
                               "rank" : 0};
                }
                for (i = 0; i < n; ++i) {
                    if (!node[i].element)
                        continue;
                    var root = i;
                    while (node[root].parent != -1)
                        root = node[root].parent;
                    for (j = 0; j < n; ++j) {
                        if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) {
                            var root2 = j;
                            while (node[root2].parent != -1)
                                root2 = node[root2].parent;
                            if(root2 != root) {
                                if(node[root].rank > node[root2].rank)
                                    node[root2].parent = root;
                                else {
                                    node[root].parent = root2;
                                    if (node[root].rank == node[root2].rank)
                                    node[root2].rank++;
                                    root = root2;
                                }
                                /* compress path from node2 to the root: */
                                var temp, node2 = j;
                                while (node[node2].parent != -1) {
                                    temp = node2;
                                    node2 = node[node2].parent;
                                    node[temp].parent = root;
                                }
                                /* compress path from node to the root: */
                                node2 = i;
                                while (node[node2].parent != -1) {
                                    temp = node2;
                                    node2 = node[node2].parent;
                                    node[temp].parent = root;
                                }
                            }
                        }
                    }
                }
                var idx_seq = [];
                var class_idx = 0;
                for(i = 0; i < n; i++) {
                    j = -1;
                    var node1 = i;
                    if(node[node1].element) {
                        while (node[node1].parent != -1)
                            node1 = node[node1].parent;
                        if(node[node1].rank >= 0)
                            node[node1].rank = ~class_idx++;
                        j = ~node[node1].rank;
                    }
                    idx_seq[i] = j;
                }
                
                var comps = [];
                for (i = 0; i < class_idx+1; ++i) {
                    comps[i] = {"neighbors" : 0,
                                "x" : 0,
                                "y" : 0,
                                "width" : 0,
                                "height" : 0,
                                "confidence" : 0};
                }
                // count number of neighbors
                for(i = 0; i < n; ++i) {
                    var r1 = rects[i];
                    var idx = idx_seq[i];
                    if (comps[idx].neighbors == 0)
                        comps[idx].confidence = r1.confidence;
                    ++comps[idx].neighbors;
                    comps[idx].x += r1.x;
                    comps[idx].y += r1.y;
                    comps[idx].width += r1.width;
                    comps[idx].height += r1.height;
                    comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence);
                }
                var seq2 = [];
                // calculate average bounding box
                for(i = 0; i < class_idx; ++i) {
                    n = comps[i].neighbors;
                    if (n >= min_neighbors)
                        seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n),
                                   "y" : (comps[i].y * 2 + n) / (2 * n),
                                   "width" : (comps[i].width * 2 + n) / (2 * n),
                                   "height" : (comps[i].height * 2 + n) / (2 * n),
                                   "neighbors" : comps[i].neighbors,
                                   "confidence" : comps[i].confidence});
                }
                var result_seq = [];
                n = seq2.length;
                // filter out small face rectangles inside large face rectangles
                for(i = 0; i < n; ++i) {
                    var r1 = seq2[i];
                    var flag = true;
                    for(j = 0; j < n; ++j) {
                        var r2 = seq2[j];
                        var distance = (r2.width * 0.25 + 0.5)|0;
                        if(i != j &&
                           r1.x >= r2.x - distance &&
                           r1.y >= r2.y - distance &&
                           r1.x + r1.width <= r2.x + r2.width + distance &&
                           r1.y + r1.height <= r2.y + r2.height + distance &&
                           (r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) {
                            flag = false;
                            break;
                        }
                    }
                    if(flag)
                        result_seq.push(r1);
                }
                return result_seq;
            }
        };
    })();
    global.bbf = bbf;
})(jsfeat);
/**
 * @author Eugene Zatepyakin / http://inspirit.ru/
 */
(function(lib) {
    "use strict";
    if (typeof module === "undefined" || typeof module.exports === "undefined") {
        // in a browser, define its namespaces in global
        window.jsfeat = lib;
    } else {
        // in commonjs, or when AMD wrapping has been applied, define its namespaces as exports
        module.exports = lib;
    }
})(jsfeat);
 |